• Title/Summary/Keyword: Environmental spore

Search Result 139, Processing Time 0.037 seconds

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

Effect of Dietary Probiotics on Growth and Pathological Status in Growing-Finishing Pig (생균제 급여가 비육돈의 발육 및 질병발생에 미치는 영향)

  • 고문석;최동윤;이종언;양창범;송상택;배종희
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • A study was conducted to determine the effect of dietary probiotics or antibiotics on growth and pathological status in growing-finishing pigs. Ninety male pigs weaned at 24 days of age were divided into three groups of 30 pigs each on the basis of body weight and litter. Three groups of ten pigs(one pen) each were assigned to one of the following diets; a control diet or diets containing 0.1% probiotics or 0.1% antibiotics (1:1 mixture of kitasamycin and sulfamethazine). Average daily gain (ADG), feed efficiency(G/F) and the pathological status were monitored. ADG, feed efficiency and carcass quality were not different (P>0.05) among the three treatments. But pork quality in pigs fed probiotics tended to be improved, compared to other treatments. The pigs fed probiotics had lower pathological lesion in intestinal monitoring than that of other treatments pigs. The chemical composition of slurry(BOD, COD, SS, T-N, T-P and ammonia) in the probiotics treatments tended to be decreased, compared to other treatments. Results of this study suggest that dietary probiotics improve pigs' housing environment, and decrease the contents of polluting materials in slurry.

  • PDF

Effect of Bordeaux Mixture on Control of Rice Leaf Blast (벼 유기재배에서 석회보르도액을 이용한 벼 잎도열병 방제 효과)

  • Kang, Beom-Ryong;Kim, Seon-Gon;Kim, Do-Ik;Lee, Yong-Hwan;Choi, Kyong-Ju;Choi, Yong-Soo
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • Recently organic farming practice of rice has been emerged in Korea, but one of the major limiting factor is the no effective environmental-friendly agro-materials to control major plant diseases. Bordeaux mixture has been used effectively as a preventive agro-chemical. The aim of this study was to investigate efficacy of Bordeanux mixture on control of rice blast caused by Magnaporthe grisea which is one of the disruptive rice diseases in world-wide. In greenhouse experiment, pre-treatment of 6-6 type of Bordeaux mixture before inoculation of spore suspension of M. grasea showed 71 % of control value. In field experiment, preventive applications of 4-8 and 6-6 types of Bordeaux mixture showed over 71 % of the control value. Chemical injury on rice leaves were not found in the application concentrations of all types of Bordeaux mixture, but observed in applications of Bordeaux mixtures between 30 and 100 diluted concentrations. This results indicate Bordeaux mixture can be used as an effective environmental-friendly agro-chemical to control rice blast disease in the field.

Influence of Soil Mixture on the Growth and Physiological Characteristics of Polystichum lepidocaulon Native Fern (배양토의 조성에 따른 자생 더부살이고사리의 생육과 생리에 미치는 영향)

  • Ju, Jin Hee;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.13-20
    • /
    • 2005
  • This study was conducted to examine the growth and physiological characteristics of Polystichum lepidocaulon native fern as affected by soil mixture as an environment modeled on habitate where was sunken-condition. 1. Polystichum lepidocaulon grew well sunken more than non-sunken condition. Under soil mixture of field soil : sand : leaf mold, Plant height, frond width, frond length, stipe length and ornamental value were increased compared with the other soil mixture. 2. Fresh and dry weight of fronds were higher with non-sunken than sunken condition. In sunken condition, fresh and dry weight were better with field soil : sand : leaf mold than the other soil mixture. 3. Number of spore fronds were increased with sunken condition. As sunken condition, sand : leaf mold was better than field soil : sand : leaf mold or leaf mold. 4. Photosynthetic rate, $CO_2$ absorption rate and water efficiency were higher with field soil : sand : leaf mold than that of sand : leaf mold or leaf mold. expect of stomatal conduction and $CO_2$ use efficiency.

Characterization of Rhizobacteria Isolated from Family Solanaceae Plants in Dokdo Island (독도에 서식하는 가지과식물로부터 분리된 근권세균의 특성)

  • Ham, Mi-Seon;Park, Yu-Mi;Sung, Hye-Ri;Sumayo, Marilyn;Ryu, Choong-Min;Park, Seung-Hwan;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.110-117
    • /
    • 2009
  • To characterize plant root-associated bacteria in wild plant family Solanaceae, Solanum nigrum L. plants were collected in Dokdo island. Forty four strains of nitrogen-fixing or spore-forming bacteria were isolated from rhizosphere of Solanum nigrum L. plants. Among these, 19 strains were able to produce auxin. Thirteen strains of these produced siderophore as determined by color reaction on CAS-blue plate, 8 strains were able to solubilize phosphate. The 16S rDNA genes of the isolated bacteria were amplified and sequenced. Model plants, pepper and tobacco, were established in order to evaluate the bacterial capacities eliciting growth promotion and induced systemic resistance. The plants treated with strain KUDC1009 were more resistant and capable of growth-promotion than control plants when challenged by either Xanthomonas axonopodis pv. vesicatoria or Erwinia carotovora sub. carotovora strain SCC1. Rhizobacteria isolated from Dokdo island can promote growth of wild type Solanum nigrum L. under much environmental stresses.

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377 (고온내성 연료용 알코올 효모균주 Saccharomyces cerevisiae KNU5377에서 HSF1 유전자의 변이주 구축)

  • Kim Il-Sup;Yun Hae-Sun;Choi Hye-Jin;Sohn Ho-Yong;Yu Choon-Bal;Kim Jong-Guk;Jin Ing-Nyol
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.454-458
    • /
    • 2006
  • HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.

Isolation and Characterization of Antifungal Metabolites from Pterocarpus santalinus against Fusarium graminearum Causing Fusarium Head Blight on Wheat (자단향으로부터 밀 붉은곰팡이병균 Fusarium graminearum에 대한 항진균활성 물질의 분리 및 특성 규명)

  • Kim, Ji-In;Ha, Areum;Park, Ae Ran;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • Fusarium head bight (FHB) is a devastating disease on major cereal crops worldwide which causes primarily by Fusarium graminearum. Synthetic fungicides are generally used in conventional agriculture to control FHB. Their prolonged usage has led to environmental issues and human health problems. This has prompted interest in developing environmentally friendly biofungicides, including botanical fungicides. In this study, a total 100 plant extracts were tested for antifungal activity against F. graminearum. The crude extract of Pterocarpus santalinus heartwood showed the strongest antifungal activity and contained two antifungal metabolites which were identified as ${\alpha}$-cedrol and widdrol by GC-MS analysis. ${\alpha}$-Cedrol and widdrol isolated from P. santalinus heartwood extract had 31.25 mg/l and 125 mg/l of minimal inhibitory concentration against the spore germination of F. graminearum, and also showed broad spectrum antifungal activities against various plant pathogens. In addition, the wettable powder type formulation of heartwood extract of P. santalinus decreased FHB incidence in dose-dependent manner and suppressed the development of FHB with control values of 87.2% at 250-fold dilution, similar to that of chemical fungicide (92.6% at 2,000-fold dilution). This study suggests that the heartwood extract of P. santalinus could be used as an effective biofungicide for the control of FHB.

The Distribution of Indicator Organisms and Incidence of Pathogenic Bacteria in Raw Pork Material Used for Korean Pork Jerky (한국형 육포제조를 위한 원료 돈육의 미생물 분포 및 병원성 미생물의 확인)

  • Kim, Hyoun-Wook;Kim, Hye-Jung;Kim, Tae-Hoon;Kim, Tae-Im;Lee, Joo-Yeon;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.76-81
    • /
    • 2008
  • The objective of this study is to evaluate the microbial safety of raw pork used to produce Korean pork jerky. The raw pork samples harbored large populations of microorganisms. In particular, mesophilic bacteria were found to be most numerous $(3.9{\times}10^2-3.9{\times}10^5cfu/g)$ in the samples. Spore-forming bacteria and coliforms were not detected below detection limit. Yeast and molds were detected at $3.8{\times}10^1-5.1{\times}10^2cfu/g$ in the raw pork. Ten samples of raw pork were analyzed for the presence of pathogenic bacteria. Bacillus cereus was isolated from samples B and J and Staphylococcus aureus was isolated from sample B. The B. cereus isolates from raw pork samples were identified with 99.8% agreement and S. aureus isolate was identified with 97.8% agreement according to the API CHB 50 kit.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF