Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.3.454

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377  

Kim Il-Sup (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
Yun Hae-Sun (Department of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health)
Choi Hye-Jin (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
Sohn Ho-Yong (Department of Food and Nutrition, Andong National University)
Yu Choon-Bal (Department of Food Science and Engineering, Daegu University)
Kim Jong-Guk (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
Jin Ing-Nyol (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
Publication Information
Journal of Life Science / v.16, no.3, 2006 , pp. 454-458 More about this Journal
Abstract
HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.
Keywords
Gene disruption; hsf1 gene; Saccharomyces cerevisiae KNU5377;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Paik, S. K., H. S. Yun, H. S. Sohn and I.N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13, 85-89
2 Waghmare, S. K., V. Caputo, S. Radovic and C. V. Bruschi. 2003. Specific targeted integration of kanamycin resistance-associated nonselectable DNA in the genome of the yeast Saccharomyces cerevisiae. BioTechniques 34, 1024-1033
3 Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin and H. Y. Sohn. 2004. Direct evidence of intracellular alkalization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14, 243-249
4 Choi, Y. H., J. B. Kim, W. S. Yang, W. T. Shi and C. W. Hwang. 2004. Expression of recombinant Korean mistletoe (KM) lectin and B genes in Saccharomyces cerevisiae. Kor. J. Life Sci. 14, 840-846   DOI   ScienceOn
5 Lee, S. I., J. Y. Park, J. G. Jung, D. G. Lee, S. H. Lee, J. M. Ha, B. J. Ha and J. H. Lee. 2005. Effects of carbon source on production of leucocin A from transformed Saccharomyces cerevisiae. Kor. J. Life Sci. 15, 847-850   과학기술학회마을   DOI   ScienceOn
6 de Winde, J. H. 2003. Functional genetics of industrial genetics. Springer-Verlag Berlin Heideerg, NY
7 Kim, I. S., H. S. Yun, H. Shimisu, E. Kitakawa, H. Iwahashi and I. Y. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15, 1240-1249   과학기술학회마을
8 Lee, C. H., J. Y. Cha, B. S. Jun, H. J. Lee, Y. C. Lee, Y. L. Choi and Y. S. Cho. 2005. The antioxidative activity of glutathione-enriched extract from Saccharomyces cerevisiae FF-8 in in vitro model system. Kor. J. Life Sci. 15, 819-825   과학기술학회마을   DOI   ScienceOn
9 Lim, C. K., Y. K. Kim, K. H. Kim, C. H. Kim, S. K. Rhee and S. W. Nam. 2004. Expression and secretion of Zymomonas mobilis levansucrase in Saccharomyces ceevisiae. Kor. J. Life Sci. 14, 429-434   DOI   ScienceOn
10 Gietz, R.D. and R.A. Woods. 2001. Genetic transformation of yeast. BioTechniques 30, 816-831
11 Gimeno-Alcaniz, J.V. and E. Matallana. 2001. Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation. Syst. Appl. Microbiol. 24, 639-644   DOI   ScienceOn
12 Walker, M. E., J. M. Gardner, A. Vystavelova, C. McBryde and B. L. V. Jiranek. 2003. Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. FEMS Yeast Res. 4, 339-337   DOI   ScienceOn
13 Kim, H. C., C. K. Lim, B. W. Kim, S. J. Jeon and S. W. Nam. 2005. Surface display of Bacillus CGTase on the cell of Saccharomyces cerevisiae. Kor. J. Life Sci. 15, 118-123   과학기술학회마을   DOI   ScienceOn
14 Wach, A. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259-265   DOI   ScienceOn