• Title/Summary/Keyword: Environmental risk assessments

Search Result 115, Processing Time 0.027 seconds

Determination of Skin Adhesion Rate of Children's Modeling Clay for Exposure Assessment (어린이 노출평가를 위한 점토류의 피부 점착률 산출)

  • Guak, Sooyoung;Lim, Miyoung;Shin, Hyerin;Park, Ji Young;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.238-243
    • /
    • 2018
  • Objectives: The purpose of this study was to determine skin adhesion rate of children's modeling clay for exposure assessment. Methods: Children's modeling clays were classified into 10 categories as PVA clay, PVA soft clay, starch-based clay, foam clay, rubber clay, oil clay, muddy clay, terra clay, paper clay and slime. A total of 26 children's clay goods was selected. Moisture content (%) and hardness of clays were measured. Five adults aged 20 to 25were recruited for experiment. Gravimetric difference of modeling clay was determined after 3 minutes playing time. Skin adhesion rate ($g/min/cm^2$) was estimated bythe amount of skin adhesion per minute (g/min) and each individual's palm surface area ($cm^2$). Results: Twenty four of the 26 children's modeling clay products were adhesive to skins. Two products of foam and rubber clay were not adhered to skin. For the 24 products, the average skin adhesion rate was $5.5{\times}10^{-4}{\pm}4.0{\times}10^{-4}g/min/cm^2$. The highest skin adhesion rate was $1.3{\times}10^{-3}{\pm}4.4{\times}10^{-4}g/min/cm^2$ for paper clay. The lowest skin adhesion rate was $4.6{\times}10^{-5}{\pm}1.1{\times}10^{-4}g/min/cm^2$ for oil clay. The skin adhesion rate was increased with increase of moisture content. Adhesion rates of some clays were varied by person and testing trials. Conclusion: The study determined skin adhesion rate of children's modeling clay. The adhesion rate is useful for exposure and risk assessments and setting safety guideline to protect children's health.

Toxicity assessment of food additive(E171) in aquatic environments (식품첨가물 E171이 수생물에 미치는 독성 평가)

  • In-Gyu Song;Kanghee Kim;Hakwon Yoon;June-Woo Park
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.41-53
    • /
    • 2023
  • E171, a mixture of titanium dioxide, has been widely used as a food additive due to its whitening effect and low toxicity. However, it has been proven that E171 is no longer safe for public health. So far, there are insufficient studies on the toxic effects of E171 on organisms especially using standardized test methods. In this study, toxicity assessments of E171 to two aquatic species, water flea (Daphnia magna) and zebrafish (Danio rerio), were performed using modified standardized test methods based on the physicochemical properties of E171. The hydrodynamic diameter, polydispersity index, and turbiscan stability index (TSI) were measured to ensure the dispersion stability of E171 in exposure media during the test period. The EC50 for immobilization of water flea was 141.7 mg L-1 while zebrafish was not affected until 100 mg L-1 of E171. Measurements of reactive oxygen species (ROS) and antioxidant enzyme activities confirmed that E171 induced oxidative stress, leading to the activation of superoxide dismutase and catalase in both water flea and zebrafish, although the expression of antioxidant enzyme genes differed between species. These results suggested the potential risk of E171 to aquatic organisms and provided toxicological insights into the impacts of E171 on the environment.

Environmental Health Surveillance of Low Birth Weight in Seoul using Air Monitoring and Birth Data (2002년 서울시 대기오염과 출생 자료를 이용한 저체중아 환경보건감시체계 연구)

  • Seo, Ju-Hee;Kim, Ok-Jin;Kim, Byung-Mi;Park, Hye-Sook;Leem, Jong-Han;Hong, Yun-Chul;Kim, Young-Ju;Ha, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.5
    • /
    • pp.363-370
    • /
    • 2007
  • Objectives: The principal objective of this study was to determine the relationship between maternal exposure to air pollution and low birth weight and to propose a possible environmental health surveillance system for low birth weight. Methods: We acquired air monitoring data for Seoul from the Ministry of Environment, the meteorological data from the Korean Meteorological Administration, the exposure assessments from the National Institute of Environmental Research, and the birth data from the Korean National Statistical Office between January 1, 2002 and December 31, 2003. The final birth data were limited to singletons within $37{\sim}44$ weeks of gestational age. We defined the Low Birth Weight (LBW) group as infants with birth weights of less than 2500g and calculated the annual LBW rate by district. The air monitoring data were measured for $CO,\;SO_2,\;NO_2,\;and\;PM_{10}$ concentrations at 27 monitoring stations in Seoul. We utilized two models to evaluate the effects of air pollution on low birth weight: the first was the relationship between the annual concentration of air pollution and low birth weight (LBW) by individual and district, and the second involved a GIS exposure model constructed by Arc View 3.1. Results: LBW risk (by Gu, or district) was significantly increased to $1.113(95%\;CI=1.111{\sim}1.116)\;for\;CO,\;1.004(95%\;CI=1.003{\sim}1.005)\;for\;NO_2,\;1.202(95%\;CI=1.199{\sim}1.206\;for\;SO_2,\;and\;1.077(95%\;CI=1.075{\sim}1.078)\;\;for\;PM_{10}$ with each interquartile range change. Personal LBW risk was significantly increased to $1.081(95%\;CI=1.002{\sim}1.166)\;for\;CO,\;1.145(95%\;CI=1.036{\sim}1.267)\;for\;SO_2,\;and\;1.053(95%\;CI=1.002{\sim}1.108)\;for\;PM_{10}$ with each interquartile range change. Personal LBW risk was increased to $1.003(95%\;CI=0.954{\sim}1.055)\;for\;NO_2$, but this was not statistically significant. The air pollution concentrations predicted by GIS positively correlated with the numbers of low birth weights, particularly in highly polluted regions. Conclusions: Environmental health surveillance is a systemic, ongoing collection effort including the analysis of data correlated with environmentally-associated diseases and exposures. In addition. environmental health surveillance allows for a timely dissemination of information to those who require that information in order to take effective action. GIS modeling is crucially important for this purpose, and thus we attempted to develop a GIS-based environmental surveillance system for low birth weight.

Separation of Nanomaterials Using Flow Field-Flow Fractionation (흐름 장-흐름 분획기를 이용한 나노물질의 분리)

  • Kim, Sung-Hee;Lee, Woo-Chun;Kim, Soon-Oh;Na, So-Young;Kim, Hyun-A;Lee, Byung-Tae;Lee, Byoung-Cheun;Eom, Ig-Chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.835-860
    • /
    • 2013
  • Recently, the consumption of nanomaterials has been significantly increased in both industrial and commercial sectors, as a result of steady advancement in the nano-technologies. This ubiquitous use of nanomaterials has brought up the concern that their exposure to environments may cause detrimental effects on human health as well as natural ecosystems, and it is required to characterize their behavior in various environmental media and to evaluate their ecotoxicity. For the sake of accomplishing those assessments, the development of methods to effectively separate them from diverse media and to quantify their properties should be requisitely accompanied. Among a number of separation techniques developed so far, this study focuses on Field-Flow Fractionation (FFF) because of its strengths, such as relatively less disturbance of samples and simple pretreatment, and we review overseas and domestic literatures on the separation of nanomaterials using the FFF technique. In particular, researches with Flow Field-Flow Fractionation (FlFFF) are highlighted due to its most frequent application among FFF techniques. The basic principle of the FlFFF is briefly introduced and the studies conducted so far are classified and scrutinized based on the sort of target nanomaterials for the purpose of furnishing practical data and information for the researchers struggling in this field. The literature review suggests that the operational conditions, such as pretreatment, selection of membrane and carrier solution, and rate (velocity) of each flow, should be optimized in order to effectively separate them from various matrices using the FFF technique. Moreover, it seems to be a prerequisite to couple or hyphenate with several detectors and analyzers for quantification of their properties after their separation using the FFF. However, its application has been restricted regarding the types of target nanomaterials and environmental media. Furthermore, domestic literature data on both separation and characterization of nanomaterials are extremely limited. Taking into account the overwhelmingly increasing consumption of nanomaterials, the efforts for the area seem to be greatly urgent.

Long-term distribution trend analysis of largemouth bass (Micropterus salmoides), based on National Fish Database, and the ecological risk assessments (전국자연환경조사 자료를 이용한 배스(Micropterus salmoides) 시공간 분포 분석 및 생태위해성 평가)

  • Kim, Jeong Eun;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.207-217
    • /
    • 2021
  • Using the data from the national survey of fish, we determined the population size and the distribution of Micropterus salmoides, which is a translocated species into the aquatic ecosystem of Korea. . The spatial concentration of this species was determined by performing an optimized hot spot analysis. After determining potential invasiveness and risk assessment, we measured the disturbance of biodiversity in the aquatic ecosystem. The result of distribution analysis indicates that the population of M. salmoides was concentrated in the major basins of Han river, Geum river, Nakdong river, and Yeongsan-Seomjin river, including the Jeju island. In particular, Nakdong river basin showed the highest appearance rate. On the contrary, Yeongsan-Seomjin river basin showed the lowest appearance rate. The Nakdong river and the Nakdong river basin were the areas with the high spatial concentration of M. salmoides. On the other hand, only Han river basin and Geum river basin had the lowest spatial concentration. The fish invasiveness screening kit(FISK) was used to assess M. salmoides, which inhabited a broad region of aquatic ecosystem: the assessment score was 31.0, indicating its 'highly invasive' nature. Our study aims to encourage research that improves the biodiversity and the conservation of M. salmoides in a priority area.

An Improved Monte-Carlo Simulation Method for Typhoon Risk Assessment in Korea (개선(改善)된 Monte-Carlo 시뮬레이션 방법(方法)에 의한 한국(韓國)의 태풍위험도(颱風危險度) 분석(分析))

  • Cho, Hyo Nam;Chang, Dong Il;Cha, Cheol Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.159-165
    • /
    • 1987
  • This study proposes an operational method of typhoon risk assessments in Korea, using Statistical analysis and probabilistic description of typhoon at a site. Two alternative simulation and fitting methods are discussed to predict the probabilistic typhoon wind speeds by indirect methods. A Commonly used indirect method is Russell's procedure, which generates about 1,000 Simulation data for typhoon winds, statistically evaluate the base-line distribution, and then fits the results to the Weibull distribution based on probabilistic description of climatological Characteristics and Wind field model of typhoon at a site. However, an alternative procedure proposed in this Paper simulates extreme typhoon wind data of about 150~200 years and directly fits the generated data to the Weibull distribution. The computational results show that the proposed simulation method is more economical and reasonable for typhoon risk-assessment based on the indirect method. And using the proposed indirect method, the probabilistic design wind speed for transmission towers in typhoon-prone region along the South-Western coast is investigated.

  • PDF

Assessment of physical condition of old large Chionanthus retusus(Chinese Fringe Tree) using structural stability analysis (천연기념물 이팝나무 노거수 구조안정성 진단을 통한 물리적 생육상태 평가)

  • SON Jiwon;SHIN Jinho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.118-130
    • /
    • 2023
  • Decay or large cavities inside trees are the main causes of trees overturning and broken branches, and structurally weakened trees are more vulnerable to strong winds and heavy snowfall. Recently, as strong winds and typhoons increase due to climate change, the damage to human life and property due to trees overturning continues to increase, and cultural assets are in a similar situation. In particular, old big trees are structurally vulnerable to external shocks such as strong winds and heavy snowfall. This study was aimed at providing a scientific basis for preventive protection measures by conducting a structural stability diagnosis of seven retusa fringe trees designated as natural monuments. For the structural stability diagnosis, tree risk assessment and internal tree defect measurements were performed. As a result of the tree risk assessment, the Retusa Fringe Trees in Sinjeon-ri, Yangsan and Gwangyangeupsu had the highest risk of broken branches due to weak branch attachment strength. As a result of the diagnosis of internal defects of cross sections of measured trees, there were suspected cavities or severe decay in all except two trees of the population of Retusa Fringe Trees in Pyeongji-ri. Natural disasters due to climate change are increasing, and the scale is getting larger, so it is very important to preemptively manage large old trees through scientific structural safety diagnosis to manage trees that are vulnerable to environmental changes.

Subchronic Inhalation Toxicity of Trichloroacetonitrile on the Sprague Dawley Rats

  • Han, Jeong-Hee;Chung, Yong-Hyun;Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.203-211
    • /
    • 2015
  • Trichloroacetonitrile is used as an intermediate in insecticides, pesticides, and dyes. In Korea alone, over 10 tons are used annually. Its oral and dermal toxicity is classified as category 3 according to the globally harmonized system of classification and labelling of chemicals, and it is designated a toxic substance by the Ministry of Environment in Korea. There are no available inhalation toxicity data on trichloroacetonitrile. Thus, the present study performed inhalation tests to provide data for hazard and risk assessments. Sprague-Dawley rats were exposed to trichloroacetonitrile at concentrations of 4, 16, or 64 ppm for 6 hour per day 5 days per week for 13 weeks in a repeated study. As a result, salivation, shortness of breath, and wheezing were observed, and their body weights decreased significantly (p < 0.05) in the 16 and 64 ppm groups. All the rats in 64 ppm group were dead or moribund within 4 weeks of the exposure. Some significant changes were observed in blood hematology and serum biochemistry (e.g., prothrombin time, ratio of albumin and globulin, blood urea nitrogen, and triglycerides), but the values were within normal physiological ranges. The major target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs. The rats exposed to 16 ppm showed moderate histopathological changes in the transitional epithelium and olfactory epithelium of the nasal cavity. Nasal-associated lymphoid tissue (NALT) and respiratory epithelium were also changed. Respiratory lesions were common in the dead rats that had been exposed to the 64 ppm concentration. The dead animals also showed loss of cilia in the trachea, pneumonitis in the lung, and epithelial hyperplasia in the bronchi and bronchioles. In conclusion, the no-observed-adverse-effect level (NOAEL) was estimated to be 4 ppm. The main target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs.

Application of simple and massive purification system of dsRNA in vivo for acute toxicity to Daphnia magna

  • CHOI, Wonkyun;LIM, Hye Song;KIM, Jin;RYU, Sung-Min;LEE, Jung Ro
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.533-539
    • /
    • 2018
  • The RNA interference (RNAi) has been considered as an important genetic tool and applied to develop a new living modified (LM) crop trait which is an improvement of nutrient quality or pest management. The RNAi of DvSnf7 has been used for resistance to LM maize and the Western Corn Rootworm which is a major agricultural pest for the US Corn Belt. Most of the environmental risk assessments (ERA) of double strand RNA (dsRNA) have been performed using in vitro transcript products, and not in vivo expressed product. A large amount of dsRNA was required for the acute toxicity assay of water fleas. Therefore development of massive dsRNA purification techniques is critical. Daphnia, a freshwater microcrustacean, is a model organism for studying cellular and molecular mechanism involved in life history traits and ecotoxicology. In this study, we established the massive dsRNA purification method using Escherichia coli and implemented acute toxicity assays to Daphnia magna. As a result, the present RNase A and DNase I, dsRNA was efficiently purified without any special techniques or equipment. Even though purified dsRNA existed during the acute toxicity test, lethality or abnormal behavior were not observed in D. magna. These results indicated that GFP and DvSnf7 dsRNA were not significantly affected to D. magna due to their lack of sequence matching in its genome. The purification method of dsRNA and the acute toxicity assay of water fleas using purified dsRNA would be suitable for the toxicological studies of LMOs to aquatic non-target organisms.

Estimation of PM10 and PM2.5 inhalation dose by travel time and respiratory volume in common transport microenvironments in Seoul, Korea (서울지역 교통수단별 이동시간과 호흡량을 고려한 미세먼지 흡입량 추정에 관한 연구)

  • Lee, Yong-Il;Jung, Wonseck;Hwang, Doyeon;Kim, Taesung;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.97-105
    • /
    • 2018
  • Recently, people's interest in particulate matter (PM) has been increasing, due to its hazardous health effects. The purpose of this study was to investigate the concentrations and as well as the inhaled weight of PM, correlated with person's heart rate in subway, bus, vehicle and bicycle in the major public transportation (Sadang - Jamsil and Nowon - Dongdaemun) in Seoul. The concentration of $PM_{10}$ and $PM_{2.5}$ were measured from each of transportation means and calculated the average concentrations which were 87.2 and $57.8{\mu}g/m^3$ for subway, 62.8 and $42.5{\mu}g/m^3$ for vehicle, 61.5 and $36.8{\mu}g/m^3$ for bus and 53.0 and $29.4{\mu}g/m^3$ for bicycle in $PM_{10}$ and $PM_{2.5}$ respectively. Inhalation dose for $PM_{10}$ and $PM_{2.5}$ were estimated at 248.1 and $139.4{\mu}g$ for bicycle, 56.7 and $39.3{\mu}g$ for vehicle, 49.4 and $29.9{\mu}g$ for bus and 44.3 and $29.1{\mu}g$ for subway, respectively. Even though subway had the highest concentration, the highest inhalation dose was the bicycle. It was due to the long travel time-exposure and breathing rate which leads to maximum of $PM_{10}$ 5.6 and $PM_{2.5}$ with 4.8 times inhalation dose comparing with other modes of transportation. With regards to future studies, the amount of inhalation in each transportation means should be considered in risk assessments of PM.