DOI QR코드

DOI QR Code

Separation of Nanomaterials Using Flow Field-Flow Fractionation

흐름 장-흐름 분획기를 이용한 나노물질의 분리

  • Kim, Sung-Hee (Department of Earth and Environmental Science & Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Woo-Chun (Department of Earth and Environmental Science & Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Science & Research Institute of Natural Science, Gyeongsang National University) ;
  • Na, So-Young (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Hyun-A (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Byung-Tae (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Byoung-Cheun (Division of Risk Assessment, National Institute of Environmental Research) ;
  • Eom, Ig-Chun (Division of Risk Assessment, National Institute of Environmental Research)
  • 김성희 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 이우춘 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 나소영 (광주과학기술원 환경공학부) ;
  • 김현아 (광주과학기술원 환경공학부) ;
  • 이병태 (광주과학기술원 환경공학부) ;
  • 이병천 (국립환경과학원 위해성평가연구과) ;
  • 엄익춘 (국립환경과학원 위해성평가연구과)
  • Received : 2013.10.16
  • Accepted : 2013.11.08
  • Published : 2013.11.30

Abstract

Recently, the consumption of nanomaterials has been significantly increased in both industrial and commercial sectors, as a result of steady advancement in the nano-technologies. This ubiquitous use of nanomaterials has brought up the concern that their exposure to environments may cause detrimental effects on human health as well as natural ecosystems, and it is required to characterize their behavior in various environmental media and to evaluate their ecotoxicity. For the sake of accomplishing those assessments, the development of methods to effectively separate them from diverse media and to quantify their properties should be requisitely accompanied. Among a number of separation techniques developed so far, this study focuses on Field-Flow Fractionation (FFF) because of its strengths, such as relatively less disturbance of samples and simple pretreatment, and we review overseas and domestic literatures on the separation of nanomaterials using the FFF technique. In particular, researches with Flow Field-Flow Fractionation (FlFFF) are highlighted due to its most frequent application among FFF techniques. The basic principle of the FlFFF is briefly introduced and the studies conducted so far are classified and scrutinized based on the sort of target nanomaterials for the purpose of furnishing practical data and information for the researchers struggling in this field. The literature review suggests that the operational conditions, such as pretreatment, selection of membrane and carrier solution, and rate (velocity) of each flow, should be optimized in order to effectively separate them from various matrices using the FFF technique. Moreover, it seems to be a prerequisite to couple or hyphenate with several detectors and analyzers for quantification of their properties after their separation using the FFF. However, its application has been restricted regarding the types of target nanomaterials and environmental media. Furthermore, domestic literature data on both separation and characterization of nanomaterials are extremely limited. Taking into account the overwhelmingly increasing consumption of nanomaterials, the efforts for the area seem to be greatly urgent.

최근 들어 나노기술의 발전에 따라 다양한 산업 및 상업분야에서 나노물질의 사용이 급증하고 있다. 이러한 나노물질이 환경에 유출되어 사람의 건강 및 생태계에 악영향을 줄 수 있다는 문제가 지속적으로 제기되어 왔다. 이에 따라 다양한 환경매질 내에서 나노물질의 거동특성 및 생독성 등에 대한 평가들이 요구되어진다. 이러한 평가들이 진행되기 위해서 필연적으로 다양한 매체 내에서 존재하는 나노물질을 효과적으로 분리하고 이들의 특성을 정량화하는 기술들이 수반되어야 한다. 본 논문에서는 이러한 나노물질의 분리기술들 중 시료의 교란이 비교적 적고 전처리과정이 단순한 장-흐름 분획기술을 이용한 나노물질 분리에 대한 국내외 선행연구들을 살펴보았다. 특히 가장 많이 활용되어온 흐름 장-흐름 분획기를 중심으로 기본원리를 살펴보고 분리대상인 나노물질의 종류에 따라서 지금까지 수행되어온 연구들을 분류하고 분석해 봄으로써 이 분야의 연구자들에게 실제적인 정보를 제공하고자 한다. 장-흐름 분획기를 이용하여 다양한 환경매질로부터 나노물질을 효과적으로 분리하기 위해서 분리대상인 나노물질의 종류와 특성을 고려한 전처리, 적절한 멤브레인과 운반용액의 선택, 흐름조건의 최적화 등이 중요한 것으로 조사되었다. 뿐만 아니라 분리 후 나노물질의 특성을 정량화하기 위해서 다양한 검출기 및 분석기와의 연계가 필수적으로 보인다. 하지만 아직까지 일부 환경매질에만 국한되어 연구가 진행되었으며, 또한 분리대상인 나노물질의 종류도 극히 제한적인 것으로 조사되었다. 특히 이러한 나노물질에 대한 분리 및 측정에 대한 국내 연구는 매우 부족한 실정이며 나노물질 사용량이 급증하고 있는 현실을 고려하면 이 분야에 대한 연구가 절실히 요구된다.

Keywords

References

  1. Kim, S. T., Kim, H. K., Han, S. H., Jung, E. C. and Lee, S. H., "Determination of size distribution of colloidal $TiO_2$ nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry," Microchem. J., 110, 636-642 (2013). https://doi.org/10.1016/j.microc.2013.07.015
  2. Shin, Y. H., "Understanding of nanotechnology and review on trend of technology development," Summer Camp Sci. Soc., 8, 57-66(2004).
  3. Choi, B. K., Kim, K. H., So, D. S. and Park, H. J., "Research of public awareness and attitude on nanotechnology,"Yearbook Nanotechnol., 11(5), 62-80(2008).
  4. Bae, E., Kwak, B. K. and Yi, J., "Environmental concentration analysis of manufactured nanomaterials," J. Kor. Soc. Environ. Anal., 11(3), 207-216(2008).
  5. Bae, E., Lee, J., Kim, Y., Choi, K. and Yi, J., "Sample preparation and analysis of physico-chemical properites for safety assessment of manufactured nanomaterials," J. Kor. Soc. Environ. Anal., 12(2), 59-73(2009).
  6. Choi, B. K., Kim, K. H., So, D. S. and Yoo, I. J., "Research trend on effects of nanotechnology on environment, health, and safety," Yearbook Nanotechnol., 10(1), 48-71(2007).
  7. Brouwer D. H., Gijsbers, J. H. and Lurvink, M. W., "Personal exposure to ultrafine particles in the workplace; exploring sampling techniques and strategies," Annals. Occupat. Hygiene, 48, 439-453(2004). https://doi.org/10.1093/annhyg/meh040
  8. OECD, "Review of the standards for their applicability to manufactured nanomaterials (Section 1: physical chemical properties): progress report," Report No. ENV/CHEM/NANO(2007)22/ADD1.
  9. Oberdorster, G., Oberdorster, E. and Oberdorster, J., "Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles," Environ. Health, 113(7), 823-839(2005).
  10. Oberdorster, E., "Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass," Environ. Health, 112(10), 1058-1062(2004).
  11. Warheit, D. B., "Nanoparticles: health impacts," Mater. Today, 7(2), 32-35(2004).
  12. Eum, C. H., Kang, D. Y. and Lee, S., "Determination of size distribution of particles in ground water using Flow Field-Flow Fractionation," J. Kor. Soc. Environ. Anal., 9(4), 243-249(2006).
  13. Eum, C. H., Kang, D. Y., Lee, T. U. and Lee, S., "Study on the size-based separation of nano to micron particles in natural water and soil using flow and sedimentation Field-Flow Fractionation," Anal. Sci. Technol., 22(1), 75-81(2009).
  14. Kang, D. Y., Ahn, S. Y., Lee, S. and Eum, C. H., "Analysis of hyaluronic acid using Flow Field-Flow Fractionation and MALS," in Proceeding of the 42th Spring Conference of Korean Soc. Anal. Sci., pp. 123-125(2009).
  15. Bekett, R., "Influence of aquatic humic substances on fate and treatment of pollutants," Chapter 5, Washington, U.S.A (1988).
  16. Giddings, J. C., "Parameters for optimum separations in Field-Flow Fractionation," Sep. Sci., 8, 567-575(1973).
  17. Kim, D. H., Moon, J. and Cho. J., "Characterization of natural organic matter (NOM) and membrane by Flow Field Flow Fractionation(Fl-FFF)," in Proceeding of the 2003 Spring Conference of Korean Soc. Environ. Eng., pp. 881-887 (2003).
  18. Giddings, J. C., "A new separation concept based on a coupling of concentration and flow nonuniformities," Sep. Sci., 1, 123-125(1966).
  19. Giddings, J. C., "The conceptual basis of Field-Flow Fractionation," J. Chem. Edu., 50, 667-669(1973). https://doi.org/10.1021/ed050p667
  20. Colfen, H. and Antonietti, M., "Field-Flow Fractionation techniques for polymer and colloid analysis," Adv. Polym. Sci., 150, 67-187(2000). https://doi.org/10.1007/3-540-48764-6_2
  21. Yu, J. S. and Oh, S. O., "Analysis of polymers using Field-Flow Fractionation," Polym. Sci. Technol., 24(3), 285-293 (2013).
  22. Kim, D. H., Ahn, H.-W. and Cho. J., "Effects of ionic strength and membrane charge on natural organic matter (NOM) removal efficiency and membrane fouling by Flow Field Flow Frction (Fl-FFF)," J. Kor. Soc. Environ. Eng., 8(7), 798-803(2004).
  23. Moon, J. and Cho. J., "Characterization of transport of nanocolloids within membrane using Flow Field-Flow Fractionation (Flow FFF)," in Proceeding of the 2004 Spring Conference of Korean Soc. Environ. Eng., pp. 214-219(2004).
  24. Ham, Y. W., Phuntsho, S., Kim, Y. J., Joo, Y. K., Lee, S. and Hong, S., "Analysis of properties of natural organic matter (NOM) using FlFFF," in Proceeding of the 2010 Fall Joint Conference of Korean Soc. Water Wastewater and Water Environ., pp. 5-6(2010).
  25. Ham, Y. W., Kim, Y. J., Joo, Y. K., Lee, S. and Hong, S., "Characterization of behavior natural organic matter (NOM) using FlFFF: Effect of physicochemical conditions and interrelationship with membrane fouling," in Proceeding of the 2011 Spring Joint Conference of Korean Soc. Water Environ. and Water Wastewater, pp. 57-58(2011).
  26. Choi, S., Lee, S., Hong, S. and Moon, J., "Fl-FFF stabilization under seawater testing conditions," in Proceeding of the 2008 Fall Joint Conference of Korean Soc. Water Wastewater and Water Environ., pp. 125-126(2008).
  27. Choi, S., Lee, S., Hong, S. and Moon, J., "Stabilization methods to separate and analyze materials in seawater using Fl-FFF," J. Kor. Soc. Water Qual., 25(2), 288-294(2009).
  28. Yu, E. K., "Fast separation and retentioin characterization for polystyrene latex beads by sedimentation Field-Flow Fractionation," J. Kor. Ind. Eng. Chem., 11(8), 847-854(2000).
  29. Moon, J. and Cho. J., "Size distribution and diffusion coefficient of nano-colloids from Flow Field-Flow Fractionation (flow-FFF)," in Proceeding of the 2004 Fall Joint Conference of Korean Soc. Water Wastewater and Water Environ., pp. 61-66(2004).
  30. Hansen, M. E., Giddings, J. C. and Beckett R., "Colloid characterization by sedimentation field-flow fractionation: VI. Perturbations due to overloading and electrostatic repulsion," J. Colloid Interf. Sci., 132(2), 300-312(1989). https://doi.org/10.1016/0021-9797(89)90245-2
  31. Dulog, L. and Schauer, T., "Field flow fractionation for particle size determination," Prog. Org. Coatings, 28, 25-31 (1996). https://doi.org/10.1016/0300-9440(95)00584-6
  32. Kim, S. H. and Cho, J., "characterizations of natural organic matter as nano particle using flow field-flow fractionation," Colloid. Surf., 287, 232-236(2006). https://doi.org/10.1016/j.colsurfa.2006.05.046
  33. Beckett, R., Zang, J. and Giddings, J. C., "Determination of molecular weight distributions of fulvic and humic acids using Flow-Field Flow Fractionation," Environ. Sci. Technol., 21, 289-295(1987). https://doi.org/10.1021/es00157a010
  34. Chon, K., Moon, J., Kim, S. D. and Cho, J., "Bio-particle separation using microfluidic porous plug for environmental monitoring," Desalination, 202, 215-223(2007). https://doi.org/10.1016/j.desal.2005.12.057
  35. Reschiglian, P., Zattoni, A., Roda, B. and Casolari, S., "Bacteria sorting by field flow fractionation. Application to wholecell escherichia coli baccine strains," Anal. Chem., 74, 4895-4904(2002). https://doi.org/10.1021/ac020199t
  36. Wiliams, S. K. R. and Caldwell, K. D., Field-Flow Fractionation in biopolymer analysis, Springer, New York, pp. 150-165(2012).
  37. Nilsson, L., Leeman, M., Wahlund, K. G. and Bergenstahl, B., "Degradation and changes in conformation of hydrophobically modified starch," Biomacromolecules, 7, 2671-2679 (2006). https://doi.org/10.1021/bm060367h
  38. Hakansson, A., Magnusson, E., Bergenstahl, B. and Nilsson, L., "Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation," J. Chromatogr. A, 1253, 127-133(2012). https://doi.org/10.1016/j.chroma.2012.07.005
  39. Qing D. and Schimpf, M. E., "Correction for particle-wall interactions in the separation of colloids by flow field-flow fractionation," Anal. Chem., 74, 2478-2485(2002). https://doi.org/10.1021/ac0200318
  40. Litzen, A., "Separation speed, retention, and dispersion in asymmetrical flow field-flow fractionation as functions of channel dimensions and flow-rates," Anal. Chem., 63(10), 461-470(1993).
  41. Schimpf, M., Caldwell, K. and Giddings, J. C., Field-Flow Fractionation Handbook, John Wiley & Sons, Inc., New York, pp. 1-30(2000).
  42. Moon, J. and Cho, J., "Investigation of nano-colloid transport in UF membranes using flow field-flow fractionation (flow FFF) and an irreversible thermodynamic transport model," Desalination, 179, 151-159(2005). https://doi.org/10.1016/j.desal.2004.11.063
  43. Moon, M. H., "Effect of carrier solutions on article retention in Flow Field-Flow Fractionation," Bull.-Kor. Chem. Soc., 16, 7(1995).
  44. Kim, D. H., Moon, J. and Cho, J., "Identification of natural organic matter transport behavior near the membrane surface using flow field-flow-fractionation (FlFFF) micro channel," J. Water Supply: Res. Technol.-AQUA, 54(4), 249-259(2005).
  45. Wahlund, K. G., Winegarner, H. S., Caldwell, K. D. and Giddings, J. C., "Improved flow field-flow fractionation system applied to water-soluble polymers: Programming, outlet stream splitting, and flow optimization," Anal. Chem., 58, 573-578(1986). https://doi.org/10.1021/ac00294a018
  46. Leeman, M, Wahlund, K. G. and Wittgren, B., "Programmed cross flow asymmetrical flow field-flow fractionation for the size separation of pullulans and hydroxypropyl cellulose," J. Chromatogr. A, 1134(1-2), 236-245(2006). https://doi.org/10.1016/j.chroma.2006.08.065
  47. Kirkland, J. J., Dilks, C. H. Jr., Rementer, S. W. and Yau, W. W., "Asymmetric-channel flow field flow fractionation with exponential force-field programming," J. Chromatogr. B, 593(1-2), 339-355(1992). https://doi.org/10.1016/0021-9673(92)80303-C
  48. Litzen, A. and Wahlund, K. G., "Improved separation speed and efficiency for proteins, nucleic-acids and viruses in asymmetrical flow field-flow fractionation," Chromatogr. A, 476, 413-421(1989). https://doi.org/10.1016/S0021-9673(01)93885-3
  49. Wahlund, K. G. and Litzen, A., "Application of an asymmetrical flow field-flow fractionation channel to the separation and characterization of proteins, plasmids, plasmid fragments, polysaccharides and unicellular algae," Chromatogr. A, 461, 73-87(1989). https://doi.org/10.1016/S0021-9673(00)94276-6
  50. Botana, A. M., Ratanathanawongs, S. K. and Giddings, J. C., "Field strength programming in Flow Field-Flow Fractionation," Microcolumn Sep., 7, 395(1995). https://doi.org/10.1002/mcs.1220070412
  51. Kirkland, J. J. and Yau, W. W., "Quantitative particle-size distributions by sedimentation field-flow fractionation with densimeter detector," J. Chromatogr. A, 550, 799-809(1991). https://doi.org/10.1016/S0021-9673(01)88583-6
  52. Alftren, J., Penarrieta, J. M., Bergenstahl, B. and Nilsson, L., "Comparison of molecular and emulsifying properties of gum arabic and mesquite gum using asymmetrical," Food Hydrocolloids, 26(1), 54-62(2012). https://doi.org/10.1016/j.foodhyd.2011.04.008
  53. Wang, G.-L., Xu, J.-J., Chen, H.-Y. and Fu, S.-Z., "Labelfree photoelectro-chemical immunoassay for [alpha]-fetoprotein detection based on $TiO_2$/CdS hybrid," Biosens. Bioelectron., 25, 791-796(2009). https://doi.org/10.1016/j.bios.2009.08.027
  54. Zhao, H., Jiang, D., Zhang, S., Catterall, K. and John, R., "Development of a direct photoelectrochemical method for determination of chemical oxygen demand," Anal. Chem., 76, 155-160(2004). https://doi.org/10.1021/ac0302298
  55. Zhou, H., Gan, X., Wang, J., Zhu, X. and Li, G., "Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide," Anal. Chem., 77, 6102-6104(2005). https://doi.org/10.1021/ac050924a
  56. Alivisatos, A. P., "Semiconductor clusters, nanocrystals, and quantum dots," Sci., 271, 933-937(1996). https://doi.org/10.1126/science.271.5251.933
  57. Sclafani, A., Palmisano, L. and Schiavello, M., "Influence of the preparation methods of $TiO_2$ on the photocatalytic degradation of phenol in aqueous dispersion," J. Phys. Chem., 94, 829-832(1990). https://doi.org/10.1021/j100365a058
  58. Colvin, V. L., Schlamp, M. C. and Alivisatos, A. P., "Lightemitting diodes made fromcadmium selenide nanocrystals and a semiconducting polymer," Nature, 370, 354-357(1994). https://doi.org/10.1038/370354a0
  59. Linsebigler, A. L., Lu, G. and Yates, J. T., Jr., "Photocatalysis on $TiO_2$ surfaces: principles, mechanisms, and selected results," Chem. Rev., 95, 735-758(1995). https://doi.org/10.1021/cr00035a013
  60. Hagfeld, A. and Gratzel, M., "Light-induced redox reactions in nanocrystalline systems," Chem. Rev., 95, 49-68(1995). https://doi.org/10.1021/cr00033a003
  61. Phillies, G. D. J., "Quasielastic light scattering," Anal. Chem., 62, 1049-1057(1990). https://doi.org/10.1021/ac00219a712
  62. Degueldre, C., Pfeiffer, H. R., Alexander, W., Wernli, B. and Bruetsch, R., "Colloid properties in granitic groundwater systems. I: sampling and characterisation," Appl. Geochem., 11, 677-695(1996). https://doi.org/10.1016/S0883-2927(96)00036-4
  63. Bochert, U. K. and Dannecker, W., "On-line aerosol analysis by atomicemission spectroscopy," J. Aerosol Sci., 20, 1525-1528(1989). https://doi.org/10.1016/0021-8502(89)90878-1
  64. McCarthy, J. and Degueldre, C., Colloidal particles in groundwater and their role in the subsurface transport of contaminants, characterization of environmental particles, Lewis Publishers, Chelsea, MI, pp. 247-315(1993).
  65. Momizu, T., Kaneco, S., Tanaka, T., Yamamoto, T. and Kawaguchi, H., "Determination of femto-gram amounts of zinc and lead in individual airborne particle by inductively coupled plasma-mass spectroscopy with direct air-sampling introduction," Anal. Sci., 9, 843-846(1993). https://doi.org/10.2116/analsci.9.843
  66. Momizu, T., Hoshino, N., Kaneco, S., Tanaka, T., Yamamoto, T., Kawaguchi, H. and Kitagawa, K.,"Successive measurement of femto-gram elemental content in individual airborne particles by ICP-MS," Anal. Sci., 17, 61-64(2001).
  67. Degueldre, C. and Favarger, P. Y., "Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study," Colloids Surf. A, 217, 137-142(2003). https://doi.org/10.1016/S0927-7757(02)00568-X
  68. Degueldre, C., Favarger, P. Y. and Bitea, C., "Zirconia colloid analysis by single particle inductively coupled plasmamass spectrometry," Anal. Chim. Acta, 518, 137-142(2004). https://doi.org/10.1016/j.aca.2004.04.015
  69. Degueldre, C. and Favarger, P. Y., "Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry," Talanta, 62, 1051-1054(2004). https://doi.org/10.1016/j.talanta.2003.10.016
  70. Degueldre, C., Favarger, P. Y., Rosse, R. and Wold, S., "Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry," Talanta., 68, 623-628(2006). https://doi.org/10.1016/j.talanta.2005.05.006
  71. Hu, S., Liu, R., Zhang, S., Huang, Z., Xing, Z. and Zhang, X., "A newstrategy for highly sensitive immunoassay based on single-particlemode detection by inductively coupled plasma mass spectrometry," J. Am. Soc. Mass Spectrom., 20, 1096-1103(2009). https://doi.org/10.1016/j.jasms.2009.02.005
  72. Degueldre, C., Favarger, P. Y. and Wold, S., "Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode," Anal. Chim. Acta, 555, 263-268 (2006). https://doi.org/10.1016/j.aca.2005.09.021
  73. Stolpe, B. and Hassellov, M., "Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: Significance for variations in element size distributions," Limnol. Oceanogr., 55(1), 187-202(2010). https://doi.org/10.4319/lo.2010.55.1.0187
  74. Reszat, T. N. and Hendry, M. J., "Characterizing dissolved organic carbon using asymmetrical Flow Field-Flow Fractionation with on-line UV and DOC detection," Anal. Chem., 77(13), 4194-4200(2005). https://doi.org/10.1021/ac048295c
  75. Lapworth, D. J., Stolpe, B., Williams, P. J., Gooddy, D. C. and Lead, J. R., "Characterization of suboxic groundwater colloids using a multimethod approach," Environ. Sci. Technol., 47(6), 2554-2561(2013). https://doi.org/10.1021/es3045778
  76. Dahlqvist, R., Benedetti, M. F., Andersson, K., Turner, D., Larsson, T., Stolpe, B. and Ingri, J., "Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon Rivers," Geochim. Cosmochim. Acta, 68(20), 4059-4075(2004) https://doi.org/10.1016/j.gca.2004.04.007
  77. Baalousha, M., Kammer, F. V. D., Motelica-Heino, M., Baborowski, M., Hofemister, C. and Le Coustumer, P., "Sizebased speciation of natural colloidal particles by Flow Field Flow Fractionation, Inductively Coupled Plasma-Mass Spectroscopy, and Transmission Electron Microscopy/X-ray Energy Dispersive Spectroscopy: Colloids-trace element interaction," Environ. Sci. Technol., 40(7), 2156-2162(2006). https://doi.org/10.1021/es051498d
  78. Baalousha, M. and Lead, J. R., "Characterization of natural aquatic colloids (<5 nm) by Flow-Field Flow Fractionation and Atomic Force Microscopy," Environ. Sci. Technol., 41(4), 1111-1117(2007). https://doi.org/10.1021/es061766n
  79. Krachler, R., Krachler, R. F., von der Kammer, F., Suhandag, A., Ayromlou, F. J. F., Hofmann, T. and Keppler, B. K., "Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean," Sci. Total Environ., 408(11), 2402-2408(2010). https://doi.org/10.1016/j.scitotenv.2010.02.018
  80. Plathe, K. L., von der Kammer, Hassellov, M., Moore, J., Murayama, M., Hofmann, T. and Hochella Jr., M. F., "Using FlFFF and TEM to determine trace metal-nanoparticle associations in riverbed sediment," Environ. Chem., 7(1), 82-93(2010). https://doi.org/10.1071/EN09111
  81. Stolpe, B., Guo, L., Shiller, A. M. and Hassellov, M., "Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation," Marine Chem., 118(3-4), 119-128(2010). https://doi.org/10.1016/j.marchem.2009.11.007
  82. Neubauer, E., Kohler, S. J., von der Kammer, F., Laudon, H. and Hofmann, T., "Effect of pH and stream order on iron and arsenic speciation in Boreal Catchments," Environ. Sci. Technol., 47(13), 7120-7128(2013). https://doi.org/10.1021/es401193j
  83. Dubascoux, S. Le Hecho, I., Gautier, M. P. and Lespes, G., "On-line and off-line quantification of trace elements associated to colloids by As-FlFFF and ICP-MS," Talanta, 77(1), 60-65(2008a). https://doi.org/10.1016/j.talanta.2008.05.050
  84. Dubascoux, S., von der Kammer, F., Le Hecho, I., Gautier, M. P. and Lespes, G., "Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation," J. Chromatogr. A, 1206, 160-165(2008b). https://doi.org/10.1016/j.chroma.2008.07.032
  85. Schmitt, D., Taylor, H. E., Aiken, G. R., Roth, D. A. and Firmmel, F. H., "Influence of natural organic matter on the adsorption of metal ions onto clay minerals," Environ. Sci. Technol., 36(13), 2932-2938(2002). https://doi.org/10.1021/es010271p
  86. Gimbert, L. J., Haygarth, P. M., Beckett, R. and Fold, P. J. W., "Comparison of centrifugation and filtration techniques for the size fractionation of colloidal material in soil suspensions using Sedimentation Field-Flow Fractionation," Environ. Sci. Technol., 39(6), 1731-1735(2005). https://doi.org/10.1021/es049230u
  87. Thang, N. M., Geckeis, H., Kim, J. J. and Beck, H. P., "Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method," Colloids Surf. A: Physicochem. Engin. Aspects, 181(1-3), 289-301(2001). https://doi.org/10.1016/S0927-7757(00)00803-7
  88. Benedetti, M., Ranville, J. F., Ponthieu, M. and Pinheiro, J. P., "Field-flow fractionation characterization and binding properties of particulate and colloidal organic matter from the Rio Amazon and Rio Negro," Org. Geochem., 33, 269-279 (2002). https://doi.org/10.1016/S0146-6380(01)00159-0
  89. Zanardi-Lamardo, E., Clark, C. D., Moore, C. A. and Zoka, R. G., "Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by Flow Field-Flow Fractionation," Environ. Sci. Technol., 36(13), 2806-2814(2002). https://doi.org/10.1021/es015792r
  90. Jackson, B. P., Ranville, J. F., Bertsch, P. M. and Sowder, A. G., "Characterization of colloidal and humic-bound Ni and U in the dissolved fraction of contaminated sediment extracts," Environ. Sci. Technol., 39, 2478-2485(2005). https://doi.org/10.1021/es0485208
  91. Siripinyanond, A., Worapanyanond, S. and Shiowatana, J., "Field-Flow Fractionation-Inductively coupled Plasma Mass Spectrometry: An alternative approach to investigate metalhumic substances interaction," Environ. Sci. Technol., 39(9), 3295-3301(2005). https://doi.org/10.1021/es0483802
  92. Alasonati, E., Slaveykova, V. I., Gallard, H., Croue', J.-P. and Benedetti, M. F., "Characterization of the colloidal organic matter from the Amazonian basin by asymmetrical flow field-flow fractionation and size exclusion chromatography," Water Res., 44(1), 223-231(2010). https://doi.org/10.1016/j.watres.2009.09.010
  93. Bole, E., Labord, F. and Castillo, J. R., "Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: Size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS," Anal. Chim. Acta, 661(2), 206-214(2010). https://doi.org/10.1016/j.aca.2009.12.021
  94. Worms, I. M. A., Szigeti, Z. A.-G., Dubascoux, S., Lespes, G., Traber, J., Sigg, L. and Slaveykova, V. I., "Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution," Water Res., 44 (1), 340-350(2010). https://doi.org/10.1016/j.watres.2009.09.037
  95. Kim, W. S., Kim, S. H., Lee, D. W., Lee, S. H., Lim, C. S. and Ryu, J. H., "Size analysis of automobile soot particles using Field-Flow Fractionation," Environ. Sci. Technol., 35 (6), 1005-1012(2001). https://doi.org/10.1021/es001329n
  96. Dieckmann, Y., Colfen, H., Hofmann, H. and Petri-Fink, A., "Particle size distribution measurements of manganese-doped ZnS nanoparticles," Anal. Chem., 81(10), 3889-3895(2009). https://doi.org/10.1021/ac900043y
  97. Isaacson, C. W. and Bouchard, D. C., "Effects of humic acid and sunlight on the generation and aggregation state of aqu/C60 nanoparticles," Environ. Sci. Technol., 44(23), 8971-8976 (2010). https://doi.org/10.1021/es103029k
  98. Trenfield, M. A., McDonald, S., Kovacs, K., Lesher, E. K., Pringle, J. M., Markich, S. J., Ng, J. C., Noller, B., Brown, P. L. and van Dam, R. A., "Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI]," Environ. Sci. Technol., 45(7), 3075-3081(2011). https://doi.org/10.1021/es103330w
  99. Sant, H. J., Chakravarty, S., Merugu, S., Ferguson, C. G. and Gale, B. K., "Characterization of polymerized liposomes using a combination of dc and cyclical Electrical Field-Flow Fractionation," Anal. Chem., 84(19), 8323-8329(2012). https://doi.org/10.1021/ac301424b
  100. Kolkman, A., Emke, E., Bauerlein, P. S., Carboni, A., Tran, D. T., der Laak, T. L., van Wezel, A. P. and de Voogt, P., "Analysis of (functionalized) fullerenes in water samples by liquid chromatography coupled to high-resolution mass spectrometry," Analy. Chem., 85(12), 5876-5874(2013).
  101. Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R. and Frimmel, F. H., "Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength," J. Chromatogr. A, 1218(27), 4206-4212(2011). https://doi.org/10.1016/j.chroma.2011.02.074
  102. Poda, A. R., Bednar, A. J., Kennedy, A. J., Harmon, A., Hull, M., Mitrano, D. M., Ranville, J. F. and Steevens, J., "Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry," J. Chromatogr. A, 1218(27), 4219-4225(2011). https://doi.org/10.1016/j.chroma.2010.12.076
  103. Mitrano, D. M., Barber, A., Bednar, A., Westerhoff, P., Higgins C. P. and Ranvillea, J. F., "Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICPMS)," Anal. Atom. Spectrometr., 27, 1131-1142(2012). https://doi.org/10.1039/c2ja30021d
  104. Romer, I., White, T. A., Baalousha, M., Chipman, K., Viant, M. R. and Lead, J. R., "Aggre20gation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests," J. Chromatogr. A, 1218(27), 4226-4233(2011). https://doi.org/10.1016/j.chroma.2011.03.034
  105. Songsilawat, K., Shiowatana, J. and Siripinyanond, A., "Flow field-flow fractionation with off-line electrothermal atomic absorption spectrometry for size characterization of silver nanoparticles," J. Chromatogr. A, 1218(27), 4213-4218(2011). https://doi.org/10.1016/j.chroma.2010.12.040
  106. Contado, C. and Pagnoni, A., "$TiO_2$ in commercial sunscreen lotion: Flow Field-Flow Fractionation and ICP-AES together for size analysis," Anal. Chem., 80(19), 7594-7608 (2008). https://doi.org/10.1021/ac8012626
  107. Domingos, R. F., Baalousha, M., Ju-Nam, Y., Reid, M., Tufenkji, N., Lead,J. R., Leppard, G. G. and Wilkinson, K. J., "Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes," Environ. Sci. Technol., 43(19), 7277-7284(2009). https://doi.org/10.1021/es900249m
  108. Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K. and Lead, J. R., "Aggregation and surface properties of iron oxide nanoparticles: Influence of ph and natural organic matter," Environ. Toxicol. Chem., 27(9), 1875-1882(2008). https://doi.org/10.1897/07-559.1
  109. Lesher, E. K., Ranville, J. F. and Honeyman, B. D., "Analysis of pH dependent uranium (VI) sorption to nanoparticulate hematite by Flow Field-Flow Fractionation-Inductively Coupled Plasma Mass Spectrometry," Environ. Sci. Technol., 43 (14), 5403-5409(2009). https://doi.org/10.1021/es900592r
  110. Knappe, P., Boehmert, L., Bienert, R., Karmutzki, S., Niemann, B., Lampen, A. and Thnnemann, A. F., "Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays," J. Chromatogr. A, 1218(27), 4160-4166(2011). https://doi.org/10.1016/j.chroma.2010.11.012
  111. Gimbert, L. J., Hamon, R. E., Casey, P. S and Worsfold, P. J., "Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation,"Environ. Chem., 4(1), 8-10(2007). https://doi.org/10.1071/EN06072
  112. Bouby, M., Geckeis, H. and Geyer, F. W., "Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles," Anal. Bioanal. Chem., 392, 1447-1457(2008). https://doi.org/10.1007/s00216-008-2422-0
  113. Hagendorfer, H., Kaegi, R., Traber, J., Mertens, S. F. L., Scherrers, R., Ludwig, C. and Ulrich, A., "Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization- Prospects and limitations demonstrated on Au nanoparticles," Anal. Chim. Acta, 706, 367-378(2011). https://doi.org/10.1016/j.aca.2011.08.014
  114. Baalousha, M. and Lead, J. R., "Rationalizing nanomaterial sizes measured by Atomic Force Microscopy, Flow Field- Flow Fractionation, and Dynamic Light Scattering: Sample preparation, polydispersity, and particle structure," Environ. Sci. Technol., 46(11), 6134-6142(2012). https://doi.org/10.1021/es301167x
  115. Bae, J., Kim, W., Rah, K., Jung, E. C. and Lee, S., "Application of flow field-flow fractionation (FlFFF) for size characterization of carbon black particles in ink," Microchem. J., 104, 44-48(2012). https://doi.org/10.1016/j.microc.2012.04.007
  116. Chen, B., Jiang, H., Zhu, Y., Cammers, A. and Selegue, J. P., "Monitoring the growth of polyoxomolybdate nanoparticles in suspension by flow field-flow fractionation," J. Am. Chem. Soc., 127(12), 4166-4167(2005). https://doi.org/10.1021/ja045067r
  117. Assemi, S., Tadjiki, S., Donose, B. C., Nguyen, A. V. and Miller, J. D., "Aggregation of fullerol $C_{60}(OH)_{24}$ nanoparticles as revealed using Flow Field-Flow Fractionation and Atomic Force Microscopy," Langmuir, 26(20), 16063-16070 (2010). https://doi.org/10.1021/la102942b
  118. Isaacson, C. W. and Bouchard, D., "Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry," J. Chromatogr. A, 1217(9), 1506-1512(2010). https://doi.org/10.1016/j.chroma.2009.12.060
  119. Guan, X., Cueto, R., Russo, P., Qi, Y. and Wu, Q., "Asymmetric Flow Field-Flow Fractionation with Multiangle Light Scattering Detection for characterization of cellulose nanocrystals," Biomacromolecules, 13(9), 2671-2679(2012). https://doi.org/10.1021/bm300595a