Browse > Article
http://dx.doi.org/10.4491/KSEE.2013.35.11.835

Separation of Nanomaterials Using Flow Field-Flow Fractionation  

Kim, Sung-Hee (Department of Earth and Environmental Science & Research Institute of Natural Science, Gyeongsang National University)
Lee, Woo-Chun (Department of Earth and Environmental Science & Research Institute of Natural Science, Gyeongsang National University)
Kim, Soon-Oh (Department of Earth and Environmental Science & Research Institute of Natural Science, Gyeongsang National University)
Na, So-Young (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology)
Kim, Hyun-A (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology)
Lee, Byung-Tae (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology)
Lee, Byoung-Cheun (Division of Risk Assessment, National Institute of Environmental Research)
Eom, Ig-Chun (Division of Risk Assessment, National Institute of Environmental Research)
Publication Information
Abstract
Recently, the consumption of nanomaterials has been significantly increased in both industrial and commercial sectors, as a result of steady advancement in the nano-technologies. This ubiquitous use of nanomaterials has brought up the concern that their exposure to environments may cause detrimental effects on human health as well as natural ecosystems, and it is required to characterize their behavior in various environmental media and to evaluate their ecotoxicity. For the sake of accomplishing those assessments, the development of methods to effectively separate them from diverse media and to quantify their properties should be requisitely accompanied. Among a number of separation techniques developed so far, this study focuses on Field-Flow Fractionation (FFF) because of its strengths, such as relatively less disturbance of samples and simple pretreatment, and we review overseas and domestic literatures on the separation of nanomaterials using the FFF technique. In particular, researches with Flow Field-Flow Fractionation (FlFFF) are highlighted due to its most frequent application among FFF techniques. The basic principle of the FlFFF is briefly introduced and the studies conducted so far are classified and scrutinized based on the sort of target nanomaterials for the purpose of furnishing practical data and information for the researchers struggling in this field. The literature review suggests that the operational conditions, such as pretreatment, selection of membrane and carrier solution, and rate (velocity) of each flow, should be optimized in order to effectively separate them from various matrices using the FFF technique. Moreover, it seems to be a prerequisite to couple or hyphenate with several detectors and analyzers for quantification of their properties after their separation using the FFF. However, its application has been restricted regarding the types of target nanomaterials and environmental media. Furthermore, domestic literature data on both separation and characterization of nanomaterials are extremely limited. Taking into account the overwhelmingly increasing consumption of nanomaterials, the efforts for the area seem to be greatly urgent.
Keywords
Nanomaterials; Separation Technique; Field-Flow Fractionation (FFF); Flow Field-Flow Fractionation (FlFFF); Carrier Solution; Flow Condition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, S. T., Kim, H. K., Han, S. H., Jung, E. C. and Lee, S. H., "Determination of size distribution of colloidal $TiO_2$ nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry," Microchem. J., 110, 636-642 (2013).   DOI   ScienceOn
2 Shin, Y. H., "Understanding of nanotechnology and review on trend of technology development," Summer Camp Sci. Soc., 8, 57-66(2004).
3 Choi, B. K., Kim, K. H., So, D. S. and Park, H. J., "Research of public awareness and attitude on nanotechnology,"Yearbook Nanotechnol., 11(5), 62-80(2008).
4 Bae, E., Kwak, B. K. and Yi, J., "Environmental concentration analysis of manufactured nanomaterials," J. Kor. Soc. Environ. Anal., 11(3), 207-216(2008).
5 Bae, E., Lee, J., Kim, Y., Choi, K. and Yi, J., "Sample preparation and analysis of physico-chemical properites for safety assessment of manufactured nanomaterials," J. Kor. Soc. Environ. Anal., 12(2), 59-73(2009).
6 Choi, B. K., Kim, K. H., So, D. S. and Yoo, I. J., "Research trend on effects of nanotechnology on environment, health, and safety," Yearbook Nanotechnol., 10(1), 48-71(2007).
7 Brouwer D. H., Gijsbers, J. H. and Lurvink, M. W., "Personal exposure to ultrafine particles in the workplace; exploring sampling techniques and strategies," Annals. Occupat. Hygiene, 48, 439-453(2004).   DOI   ScienceOn
8 OECD, "Review of the standards for their applicability to manufactured nanomaterials (Section 1: physical chemical properties): progress report," Report No. ENV/CHEM/NANO(2007)22/ADD1.
9 Oberdorster, G., Oberdorster, E. and Oberdorster, J., "Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles," Environ. Health, 113(7), 823-839(2005).
10 Oberdorster, E., "Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass," Environ. Health, 112(10), 1058-1062(2004).
11 Warheit, D. B., "Nanoparticles: health impacts," Mater. Today, 7(2), 32-35(2004).
12 Eum, C. H., Kang, D. Y. and Lee, S., "Determination of size distribution of particles in ground water using Flow Field-Flow Fractionation," J. Kor. Soc. Environ. Anal., 9(4), 243-249(2006).
13 Eum, C. H., Kang, D. Y., Lee, T. U. and Lee, S., "Study on the size-based separation of nano to micron particles in natural water and soil using flow and sedimentation Field-Flow Fractionation," Anal. Sci. Technol., 22(1), 75-81(2009).   과학기술학회마을
14 Kim, D. H., Moon, J. and Cho. J., "Characterization of natural organic matter (NOM) and membrane by Flow Field Flow Fractionation(Fl-FFF)," in Proceeding of the 2003 Spring Conference of Korean Soc. Environ. Eng., pp. 881-887 (2003).
15 Kang, D. Y., Ahn, S. Y., Lee, S. and Eum, C. H., "Analysis of hyaluronic acid using Flow Field-Flow Fractionation and MALS," in Proceeding of the 42th Spring Conference of Korean Soc. Anal. Sci., pp. 123-125(2009).
16 Bekett, R., "Influence of aquatic humic substances on fate and treatment of pollutants," Chapter 5, Washington, U.S.A (1988).
17 Giddings, J. C., "Parameters for optimum separations in Field-Flow Fractionation," Sep. Sci., 8, 567-575(1973).
18 Giddings, J. C., "A new separation concept based on a coupling of concentration and flow nonuniformities," Sep. Sci., 1, 123-125(1966).
19 Giddings, J. C., "The conceptual basis of Field-Flow Fractionation," J. Chem. Edu., 50, 667-669(1973).   DOI
20 Colfen, H. and Antonietti, M., "Field-Flow Fractionation techniques for polymer and colloid analysis," Adv. Polym. Sci., 150, 67-187(2000).   DOI
21 Yu, J. S. and Oh, S. O., "Analysis of polymers using Field-Flow Fractionation," Polym. Sci. Technol., 24(3), 285-293 (2013).
22 Kim, D. H., Ahn, H.-W. and Cho. J., "Effects of ionic strength and membrane charge on natural organic matter (NOM) removal efficiency and membrane fouling by Flow Field Flow Frction (Fl-FFF)," J. Kor. Soc. Environ. Eng., 8(7), 798-803(2004).
23 Moon, J. and Cho. J., "Characterization of transport of nanocolloids within membrane using Flow Field-Flow Fractionation (Flow FFF)," in Proceeding of the 2004 Spring Conference of Korean Soc. Environ. Eng., pp. 214-219(2004).
24 Choi, S., Lee, S., Hong, S. and Moon, J., "Stabilization methods to separate and analyze materials in seawater using Fl-FFF," J. Kor. Soc. Water Qual., 25(2), 288-294(2009).   과학기술학회마을
25 Ham, Y. W., Phuntsho, S., Kim, Y. J., Joo, Y. K., Lee, S. and Hong, S., "Analysis of properties of natural organic matter (NOM) using FlFFF," in Proceeding of the 2010 Fall Joint Conference of Korean Soc. Water Wastewater and Water Environ., pp. 5-6(2010).
26 Ham, Y. W., Kim, Y. J., Joo, Y. K., Lee, S. and Hong, S., "Characterization of behavior natural organic matter (NOM) using FlFFF: Effect of physicochemical conditions and interrelationship with membrane fouling," in Proceeding of the 2011 Spring Joint Conference of Korean Soc. Water Environ. and Water Wastewater, pp. 57-58(2011).
27 Choi, S., Lee, S., Hong, S. and Moon, J., "Fl-FFF stabilization under seawater testing conditions," in Proceeding of the 2008 Fall Joint Conference of Korean Soc. Water Wastewater and Water Environ., pp. 125-126(2008).
28 Yu, E. K., "Fast separation and retentioin characterization for polystyrene latex beads by sedimentation Field-Flow Fractionation," J. Kor. Ind. Eng. Chem., 11(8), 847-854(2000).
29 Moon, J. and Cho. J., "Size distribution and diffusion coefficient of nano-colloids from Flow Field-Flow Fractionation (flow-FFF)," in Proceeding of the 2004 Fall Joint Conference of Korean Soc. Water Wastewater and Water Environ., pp. 61-66(2004).
30 Hansen, M. E., Giddings, J. C. and Beckett R., "Colloid characterization by sedimentation field-flow fractionation: VI. Perturbations due to overloading and electrostatic repulsion," J. Colloid Interf. Sci., 132(2), 300-312(1989).   DOI   ScienceOn
31 Dulog, L. and Schauer, T., "Field flow fractionation for particle size determination," Prog. Org. Coatings, 28, 25-31 (1996).   DOI   ScienceOn
32 Reschiglian, P., Zattoni, A., Roda, B. and Casolari, S., "Bacteria sorting by field flow fractionation. Application to wholecell escherichia coli baccine strains," Anal. Chem., 74, 4895-4904(2002).   DOI   ScienceOn
33 Kim, S. H. and Cho, J., "characterizations of natural organic matter as nano particle using flow field-flow fractionation," Colloid. Surf., 287, 232-236(2006).   DOI   ScienceOn
34 Beckett, R., Zang, J. and Giddings, J. C., "Determination of molecular weight distributions of fulvic and humic acids using Flow-Field Flow Fractionation," Environ. Sci. Technol., 21, 289-295(1987).   DOI   ScienceOn
35 Chon, K., Moon, J., Kim, S. D. and Cho, J., "Bio-particle separation using microfluidic porous plug for environmental monitoring," Desalination, 202, 215-223(2007).   DOI   ScienceOn
36 Wiliams, S. K. R. and Caldwell, K. D., Field-Flow Fractionation in biopolymer analysis, Springer, New York, pp. 150-165(2012).
37 Nilsson, L., Leeman, M., Wahlund, K. G. and Bergenstahl, B., "Degradation and changes in conformation of hydrophobically modified starch," Biomacromolecules, 7, 2671-2679 (2006).   DOI   ScienceOn
38 Hakansson, A., Magnusson, E., Bergenstahl, B. and Nilsson, L., "Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation," J. Chromatogr. A, 1253, 127-133(2012).   DOI   ScienceOn
39 Qing D. and Schimpf, M. E., "Correction for particle-wall interactions in the separation of colloids by flow field-flow fractionation," Anal. Chem., 74, 2478-2485(2002).   DOI   ScienceOn
40 Litzen, A., "Separation speed, retention, and dispersion in asymmetrical flow field-flow fractionation as functions of channel dimensions and flow-rates," Anal. Chem., 63(10), 461-470(1993).
41 Kim, D. H., Moon, J. and Cho, J., "Identification of natural organic matter transport behavior near the membrane surface using flow field-flow-fractionation (FlFFF) micro channel," J. Water Supply: Res. Technol.-AQUA, 54(4), 249-259(2005).
42 Schimpf, M., Caldwell, K. and Giddings, J. C., Field-Flow Fractionation Handbook, John Wiley & Sons, Inc., New York, pp. 1-30(2000).
43 Moon, J. and Cho, J., "Investigation of nano-colloid transport in UF membranes using flow field-flow fractionation (flow FFF) and an irreversible thermodynamic transport model," Desalination, 179, 151-159(2005).   DOI   ScienceOn
44 Moon, M. H., "Effect of carrier solutions on article retention in Flow Field-Flow Fractionation," Bull.-Kor. Chem. Soc., 16, 7(1995).
45 Wahlund, K. G., Winegarner, H. S., Caldwell, K. D. and Giddings, J. C., "Improved flow field-flow fractionation system applied to water-soluble polymers: Programming, outlet stream splitting, and flow optimization," Anal. Chem., 58, 573-578(1986).   DOI   ScienceOn
46 Leeman, M, Wahlund, K. G. and Wittgren, B., "Programmed cross flow asymmetrical flow field-flow fractionation for the size separation of pullulans and hydroxypropyl cellulose," J. Chromatogr. A, 1134(1-2), 236-245(2006).   DOI   ScienceOn
47 Kirkland, J. J., Dilks, C. H. Jr., Rementer, S. W. and Yau, W. W., "Asymmetric-channel flow field flow fractionation with exponential force-field programming," J. Chromatogr. B, 593(1-2), 339-355(1992).   DOI   ScienceOn
48 Litzen, A. and Wahlund, K. G., "Improved separation speed and efficiency for proteins, nucleic-acids and viruses in asymmetrical flow field-flow fractionation," Chromatogr. A, 476, 413-421(1989).   DOI   ScienceOn
49 Botana, A. M., Ratanathanawongs, S. K. and Giddings, J. C., "Field strength programming in Flow Field-Flow Fractionation," Microcolumn Sep., 7, 395(1995).   DOI
50 Wahlund, K. G. and Litzen, A., "Application of an asymmetrical flow field-flow fractionation channel to the separation and characterization of proteins, plasmids, plasmid fragments, polysaccharides and unicellular algae," Chromatogr. A, 461, 73-87(1989).   DOI   ScienceOn
51 Kirkland, J. J. and Yau, W. W., "Quantitative particle-size distributions by sedimentation field-flow fractionation with densimeter detector," J. Chromatogr. A, 550, 799-809(1991).   DOI   ScienceOn
52 Alftren, J., Penarrieta, J. M., Bergenstahl, B. and Nilsson, L., "Comparison of molecular and emulsifying properties of gum arabic and mesquite gum using asymmetrical," Food Hydrocolloids, 26(1), 54-62(2012).   DOI   ScienceOn
53 Wang, G.-L., Xu, J.-J., Chen, H.-Y. and Fu, S.-Z., "Labelfree photoelectro-chemical immunoassay for [alpha]-fetoprotein detection based on $TiO_2$/CdS hybrid," Biosens. Bioelectron., 25, 791-796(2009).   DOI   ScienceOn
54 Zhao, H., Jiang, D., Zhang, S., Catterall, K. and John, R., "Development of a direct photoelectrochemical method for determination of chemical oxygen demand," Anal. Chem., 76, 155-160(2004).   DOI   ScienceOn
55 Zhou, H., Gan, X., Wang, J., Zhu, X. and Li, G., "Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide," Anal. Chem., 77, 6102-6104(2005).   DOI   ScienceOn
56 Alivisatos, A. P., "Semiconductor clusters, nanocrystals, and quantum dots," Sci., 271, 933-937(1996).   DOI   ScienceOn
57 Hagfeld, A. and Gratzel, M., "Light-induced redox reactions in nanocrystalline systems," Chem. Rev., 95, 49-68(1995).   DOI   ScienceOn
58 Sclafani, A., Palmisano, L. and Schiavello, M., "Influence of the preparation methods of $TiO_2$ on the photocatalytic degradation of phenol in aqueous dispersion," J. Phys. Chem., 94, 829-832(1990).   DOI
59 Colvin, V. L., Schlamp, M. C. and Alivisatos, A. P., "Lightemitting diodes made fromcadmium selenide nanocrystals and a semiconducting polymer," Nature, 370, 354-357(1994).   DOI   ScienceOn
60 Linsebigler, A. L., Lu, G. and Yates, J. T., Jr., "Photocatalysis on $TiO_2$ surfaces: principles, mechanisms, and selected results," Chem. Rev., 95, 735-758(1995).   DOI   ScienceOn
61 Phillies, G. D. J., "Quasielastic light scattering," Anal. Chem., 62, 1049-1057(1990).   DOI
62 Degueldre, C., Pfeiffer, H. R., Alexander, W., Wernli, B. and Bruetsch, R., "Colloid properties in granitic groundwater systems. I: sampling and characterisation," Appl. Geochem., 11, 677-695(1996).   DOI   ScienceOn
63 Bochert, U. K. and Dannecker, W., "On-line aerosol analysis by atomicemission spectroscopy," J. Aerosol Sci., 20, 1525-1528(1989).   DOI   ScienceOn
64 McCarthy, J. and Degueldre, C., Colloidal particles in groundwater and their role in the subsurface transport of contaminants, characterization of environmental particles, Lewis Publishers, Chelsea, MI, pp. 247-315(1993).
65 Momizu, T., Kaneco, S., Tanaka, T., Yamamoto, T. and Kawaguchi, H., "Determination of femto-gram amounts of zinc and lead in individual airborne particle by inductively coupled plasma-mass spectroscopy with direct air-sampling introduction," Anal. Sci., 9, 843-846(1993).   DOI   ScienceOn
66 Degueldre, C. and Favarger, P. Y., "Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry," Talanta, 62, 1051-1054(2004).   DOI   ScienceOn
67 Momizu, T., Hoshino, N., Kaneco, S., Tanaka, T., Yamamoto, T., Kawaguchi, H. and Kitagawa, K.,"Successive measurement of femto-gram elemental content in individual airborne particles by ICP-MS," Anal. Sci., 17, 61-64(2001).
68 Degueldre, C. and Favarger, P. Y., "Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study," Colloids Surf. A, 217, 137-142(2003).   DOI   ScienceOn
69 Degueldre, C., Favarger, P. Y. and Bitea, C., "Zirconia colloid analysis by single particle inductively coupled plasmamass spectrometry," Anal. Chim. Acta, 518, 137-142(2004).   DOI   ScienceOn
70 Degueldre, C., Favarger, P. Y., Rosse, R. and Wold, S., "Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry," Talanta., 68, 623-628(2006).   DOI   ScienceOn
71 Hu, S., Liu, R., Zhang, S., Huang, Z., Xing, Z. and Zhang, X., "A newstrategy for highly sensitive immunoassay based on single-particlemode detection by inductively coupled plasma mass spectrometry," J. Am. Soc. Mass Spectrom., 20, 1096-1103(2009).   DOI   ScienceOn
72 Degueldre, C., Favarger, P. Y. and Wold, S., "Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode," Anal. Chim. Acta, 555, 263-268 (2006).   DOI   ScienceOn
73 Stolpe, B. and Hassellov, M., "Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: Significance for variations in element size distributions," Limnol. Oceanogr., 55(1), 187-202(2010).   DOI
74 Baalousha, M., Kammer, F. V. D., Motelica-Heino, M., Baborowski, M., Hofemister, C. and Le Coustumer, P., "Sizebased speciation of natural colloidal particles by Flow Field Flow Fractionation, Inductively Coupled Plasma-Mass Spectroscopy, and Transmission Electron Microscopy/X-ray Energy Dispersive Spectroscopy: Colloids-trace element interaction," Environ. Sci. Technol., 40(7), 2156-2162(2006).   DOI   ScienceOn
75 Reszat, T. N. and Hendry, M. J., "Characterizing dissolved organic carbon using asymmetrical Flow Field-Flow Fractionation with on-line UV and DOC detection," Anal. Chem., 77(13), 4194-4200(2005).   DOI   ScienceOn
76 Lapworth, D. J., Stolpe, B., Williams, P. J., Gooddy, D. C. and Lead, J. R., "Characterization of suboxic groundwater colloids using a multimethod approach," Environ. Sci. Technol., 47(6), 2554-2561(2013).   DOI   ScienceOn
77 Dahlqvist, R., Benedetti, M. F., Andersson, K., Turner, D., Larsson, T., Stolpe, B. and Ingri, J., "Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon Rivers," Geochim. Cosmochim. Acta, 68(20), 4059-4075(2004)   DOI   ScienceOn
78 Baalousha, M. and Lead, J. R., "Characterization of natural aquatic colloids (<5 nm) by Flow-Field Flow Fractionation and Atomic Force Microscopy," Environ. Sci. Technol., 41(4), 1111-1117(2007).   DOI   ScienceOn
79 Krachler, R., Krachler, R. F., von der Kammer, F., Suhandag, A., Ayromlou, F. J. F., Hofmann, T. and Keppler, B. K., "Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean," Sci. Total Environ., 408(11), 2402-2408(2010).   DOI   ScienceOn
80 Plathe, K. L., von der Kammer, Hassellov, M., Moore, J., Murayama, M., Hofmann, T. and Hochella Jr., M. F., "Using FlFFF and TEM to determine trace metal-nanoparticle associations in riverbed sediment," Environ. Chem., 7(1), 82-93(2010).   DOI
81 Dubascoux, S., von der Kammer, F., Le Hecho, I., Gautier, M. P. and Lespes, G., "Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation," J. Chromatogr. A, 1206, 160-165(2008b).   DOI   ScienceOn
82 Stolpe, B., Guo, L., Shiller, A. M. and Hassellov, M., "Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation," Marine Chem., 118(3-4), 119-128(2010).   DOI   ScienceOn
83 Neubauer, E., Kohler, S. J., von der Kammer, F., Laudon, H. and Hofmann, T., "Effect of pH and stream order on iron and arsenic speciation in Boreal Catchments," Environ. Sci. Technol., 47(13), 7120-7128(2013).   DOI   ScienceOn
84 Dubascoux, S. Le Hecho, I., Gautier, M. P. and Lespes, G., "On-line and off-line quantification of trace elements associated to colloids by As-FlFFF and ICP-MS," Talanta, 77(1), 60-65(2008a).   DOI   ScienceOn
85 Schmitt, D., Taylor, H. E., Aiken, G. R., Roth, D. A. and Firmmel, F. H., "Influence of natural organic matter on the adsorption of metal ions onto clay minerals," Environ. Sci. Technol., 36(13), 2932-2938(2002).   DOI   ScienceOn
86 Gimbert, L. J., Haygarth, P. M., Beckett, R. and Fold, P. J. W., "Comparison of centrifugation and filtration techniques for the size fractionation of colloidal material in soil suspensions using Sedimentation Field-Flow Fractionation," Environ. Sci. Technol., 39(6), 1731-1735(2005).   DOI   ScienceOn
87 Thang, N. M., Geckeis, H., Kim, J. J. and Beck, H. P., "Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method," Colloids Surf. A: Physicochem. Engin. Aspects, 181(1-3), 289-301(2001).   DOI   ScienceOn
88 Jackson, B. P., Ranville, J. F., Bertsch, P. M. and Sowder, A. G., "Characterization of colloidal and humic-bound Ni and U in the dissolved fraction of contaminated sediment extracts," Environ. Sci. Technol., 39, 2478-2485(2005).   DOI   ScienceOn
89 Benedetti, M., Ranville, J. F., Ponthieu, M. and Pinheiro, J. P., "Field-flow fractionation characterization and binding properties of particulate and colloidal organic matter from the Rio Amazon and Rio Negro," Org. Geochem., 33, 269-279 (2002).   DOI   ScienceOn
90 Zanardi-Lamardo, E., Clark, C. D., Moore, C. A. and Zoka, R. G., "Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by Flow Field-Flow Fractionation," Environ. Sci. Technol., 36(13), 2806-2814(2002).   DOI   ScienceOn
91 Siripinyanond, A., Worapanyanond, S. and Shiowatana, J., "Field-Flow Fractionation-Inductively coupled Plasma Mass Spectrometry: An alternative approach to investigate metalhumic substances interaction," Environ. Sci. Technol., 39(9), 3295-3301(2005).   DOI   ScienceOn
92 Alasonati, E., Slaveykova, V. I., Gallard, H., Croue', J.-P. and Benedetti, M. F., "Characterization of the colloidal organic matter from the Amazonian basin by asymmetrical flow field-flow fractionation and size exclusion chromatography," Water Res., 44(1), 223-231(2010).   DOI   ScienceOn
93 Bole, E., Labord, F. and Castillo, J. R., "Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: Size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS," Anal. Chim. Acta, 661(2), 206-214(2010).   DOI   ScienceOn
94 Worms, I. M. A., Szigeti, Z. A.-G., Dubascoux, S., Lespes, G., Traber, J., Sigg, L. and Slaveykova, V. I., "Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution," Water Res., 44 (1), 340-350(2010).   DOI   ScienceOn
95 Trenfield, M. A., McDonald, S., Kovacs, K., Lesher, E. K., Pringle, J. M., Markich, S. J., Ng, J. C., Noller, B., Brown, P. L. and van Dam, R. A., "Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI]," Environ. Sci. Technol., 45(7), 3075-3081(2011).   DOI   ScienceOn
96 Kim, W. S., Kim, S. H., Lee, D. W., Lee, S. H., Lim, C. S. and Ryu, J. H., "Size analysis of automobile soot particles using Field-Flow Fractionation," Environ. Sci. Technol., 35 (6), 1005-1012(2001).   DOI   ScienceOn
97 Dieckmann, Y., Colfen, H., Hofmann, H. and Petri-Fink, A., "Particle size distribution measurements of manganese-doped ZnS nanoparticles," Anal. Chem., 81(10), 3889-3895(2009).   DOI   ScienceOn
98 Isaacson, C. W. and Bouchard, D. C., "Effects of humic acid and sunlight on the generation and aggregation state of aqu/C60 nanoparticles," Environ. Sci. Technol., 44(23), 8971-8976 (2010).   DOI   ScienceOn
99 Sant, H. J., Chakravarty, S., Merugu, S., Ferguson, C. G. and Gale, B. K., "Characterization of polymerized liposomes using a combination of dc and cyclical Electrical Field-Flow Fractionation," Anal. Chem., 84(19), 8323-8329(2012).   DOI   ScienceOn
100 Kolkman, A., Emke, E., Bauerlein, P. S., Carboni, A., Tran, D. T., der Laak, T. L., van Wezel, A. P. and de Voogt, P., "Analysis of (functionalized) fullerenes in water samples by liquid chromatography coupled to high-resolution mass spectrometry," Analy. Chem., 85(12), 5876-5874(2013).
101 Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R. and Frimmel, F. H., "Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength," J. Chromatogr. A, 1218(27), 4206-4212(2011).   DOI   ScienceOn
102 Songsilawat, K., Shiowatana, J. and Siripinyanond, A., "Flow field-flow fractionation with off-line electrothermal atomic absorption spectrometry for size characterization of silver nanoparticles," J. Chromatogr. A, 1218(27), 4213-4218(2011).   DOI   ScienceOn
103 Poda, A. R., Bednar, A. J., Kennedy, A. J., Harmon, A., Hull, M., Mitrano, D. M., Ranville, J. F. and Steevens, J., "Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry," J. Chromatogr. A, 1218(27), 4219-4225(2011).   DOI   ScienceOn
104 Mitrano, D. M., Barber, A., Bednar, A., Westerhoff, P., Higgins C. P. and Ranvillea, J. F., "Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICPMS)," Anal. Atom. Spectrometr., 27, 1131-1142(2012).   DOI   ScienceOn
105 Romer, I., White, T. A., Baalousha, M., Chipman, K., Viant, M. R. and Lead, J. R., "Aggre20gation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests," J. Chromatogr. A, 1218(27), 4226-4233(2011).   DOI   ScienceOn
106 Contado, C. and Pagnoni, A., "$TiO_2$ in commercial sunscreen lotion: Flow Field-Flow Fractionation and ICP-AES together for size analysis," Anal. Chem., 80(19), 7594-7608 (2008).   DOI   ScienceOn
107 Domingos, R. F., Baalousha, M., Ju-Nam, Y., Reid, M., Tufenkji, N., Lead,J. R., Leppard, G. G. and Wilkinson, K. J., "Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes," Environ. Sci. Technol., 43(19), 7277-7284(2009).   DOI   ScienceOn
108 Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K. and Lead, J. R., "Aggregation and surface properties of iron oxide nanoparticles: Influence of ph and natural organic matter," Environ. Toxicol. Chem., 27(9), 1875-1882(2008).   DOI   ScienceOn
109 Knappe, P., Boehmert, L., Bienert, R., Karmutzki, S., Niemann, B., Lampen, A. and Thnnemann, A. F., "Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays," J. Chromatogr. A, 1218(27), 4160-4166(2011).   DOI   ScienceOn
110 Lesher, E. K., Ranville, J. F. and Honeyman, B. D., "Analysis of pH dependent uranium (VI) sorption to nanoparticulate hematite by Flow Field-Flow Fractionation-Inductively Coupled Plasma Mass Spectrometry," Environ. Sci. Technol., 43 (14), 5403-5409(2009).   DOI   ScienceOn
111 Gimbert, L. J., Hamon, R. E., Casey, P. S and Worsfold, P. J., "Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation,"Environ. Chem., 4(1), 8-10(2007).   DOI   ScienceOn
112 Bouby, M., Geckeis, H. and Geyer, F. W., "Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles," Anal. Bioanal. Chem., 392, 1447-1457(2008).   DOI
113 Hagendorfer, H., Kaegi, R., Traber, J., Mertens, S. F. L., Scherrers, R., Ludwig, C. and Ulrich, A., "Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization- Prospects and limitations demonstrated on Au nanoparticles," Anal. Chim. Acta, 706, 367-378(2011).   DOI   ScienceOn
114 Baalousha, M. and Lead, J. R., "Rationalizing nanomaterial sizes measured by Atomic Force Microscopy, Flow Field- Flow Fractionation, and Dynamic Light Scattering: Sample preparation, polydispersity, and particle structure," Environ. Sci. Technol., 46(11), 6134-6142(2012).   DOI   ScienceOn
115 Bae, J., Kim, W., Rah, K., Jung, E. C. and Lee, S., "Application of flow field-flow fractionation (FlFFF) for size characterization of carbon black particles in ink," Microchem. J., 104, 44-48(2012).   DOI   ScienceOn
116 Guan, X., Cueto, R., Russo, P., Qi, Y. and Wu, Q., "Asymmetric Flow Field-Flow Fractionation with Multiangle Light Scattering Detection for characterization of cellulose nanocrystals," Biomacromolecules, 13(9), 2671-2679(2012).   DOI   ScienceOn
117 Chen, B., Jiang, H., Zhu, Y., Cammers, A. and Selegue, J. P., "Monitoring the growth of polyoxomolybdate nanoparticles in suspension by flow field-flow fractionation," J. Am. Chem. Soc., 127(12), 4166-4167(2005).   DOI   ScienceOn
118 Assemi, S., Tadjiki, S., Donose, B. C., Nguyen, A. V. and Miller, J. D., "Aggregation of fullerol $C_{60}(OH)_{24}$ nanoparticles as revealed using Flow Field-Flow Fractionation and Atomic Force Microscopy," Langmuir, 26(20), 16063-16070 (2010).   DOI   ScienceOn
119 Isaacson, C. W. and Bouchard, D., "Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry," J. Chromatogr. A, 1217(9), 1506-1512(2010).   DOI   ScienceOn