• 제목/요약/키워드: Environmental monitoring sensor

검색결과 612건 처리시간 0.027초

Low-power Environmental Monitoring System for ZigBee Wireless Sensor Network

  • Alhmiedat, Tareq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4781-4803
    • /
    • 2017
  • Environmental monitoring systems using Wireless Sensor Networks (WSNs) face the challenge of high power consumption, due to the high levels of multi-hop data communication involved. In order to overcome the issue of fast energy depletion, a proof-of-concept implementation proves that adopting a clustering algorithm in environmental monitoring applications will significantly reduce the total power consumption for environment sensor nodes. In this paper, an energy-efficient WSN-based environmental monitoring system is proposed and implemented, using eight sensor nodes deployed over an area of $1km^2$, which took place in the city of Tabuk in Saudi Arabia. The effectiveness of the proposed environmental monitoring system has been demonstrated through adopting a number of real experimental studies.

복합재료 경화도 측정을 위한 유전 센서 (Dielectric sensor for cure monitoring of composite materials)

  • 김학성;권재욱;김진국;이대길;최진경;김일영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.219-223
    • /
    • 2001
  • The on-line cure monitoring during the cure process of composite materials is important for better quality and productivity. The dielectric sensor for cure monitoring consists of base film and electrodes. Because the characteristic of dielectric sensor for the on-line cure monitoring is dependent on the base material, width and number of electrode, etc, the dielectric sensor should be standardized. And the selection of base film material of sensor is very important. In order to prevent the measuring errors generated from the increase of environmental temperature, the base film material should have stable dielectric constant with respect to environmental temperature. In this study, the newly developed dielectric sensor for cure monitoring was designed and the dissipation factor which is function of degree of cure was measured using the sensor. The relationship between the dissipation factor and degree of cure with respect to environmental temperature was investigated.

  • PDF

MEMS/Nano-technologies for Smart Air Environmental Monitoring Sensors

  • Park, Inkyu;Yang, Daejong;Kang, Kyungnam
    • 센서학회지
    • /
    • 제24권5호
    • /
    • pp.281-286
    • /
    • 2015
  • The importance of air quality monitoring is rapidly increasing. Even though state-of-the-art air quality monitoring technologies such as mass spectrometry, gas chromatography, and optical measurement enable high-fidelity measurement of air pollutants, they cannot be widely used for portable or personalized platforms because of their high cost and complexity. Recently, personalized and localized environmental monitoring, rather than global and averaged environmental monitoring, has drawn greater attention with the advancement of mobile telecommunication technologies. Here, micro- and nano-technologies enable highly integrated and ultra-compact sensors to meet the needs of personalized environmental monitoring. In this paper, several examples of MEMS-based gas sensors for compact and personalized air quality monitoring are explained. Additionally, the principles and usage of functional nanomaterials are discussed for highly sensitive and selective gas sensors.

Environmental Monitoring System for Base Station with Sensor Node Networks

  • Hur, Chung-Inn;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.258-262
    • /
    • 2009
  • A Practical application of environmental monitoring system based on wireless sensor node network with the core of embedded system STR711FR2 microprocessor is presented in the paper. The adaptable and classifiable wireless sensor node network is used to achieve the data acquisition and multi-hop wireless communication of parameters of the monitoring base station environment including repeaters. The structure of the system is proposed and the hardware architecture of the system is designed, and the system operating procedures is proposed. As a result of field test, designed hardware platform operated with 50kbps bit rate and 5MHz channel spacing at 2040Hz. The wireless monitoring system can be managed and swiftly retreated without support of base station environmental monitoring.

A NoSQL data management infrastructure for bridge monitoring

  • Jeong, Seongwoon;Zhang, Yilan;O'Connor, Sean;Lynch, Jerome P.;Sohn, Hoon;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.669-690
    • /
    • 2016
  • Advances in sensor technologies have led to the instrumentation of sensor networks for bridge monitoring and management. For a dense sensor network, enormous amount of sensor data are collected. The data need to be managed, processed, and interpreted. Data management issues are of prime importance for a bridge management system. This paper describes a data management infrastructure for bridge monitoring applications. Specifically, NoSQL database systems such as MongoDB and Apache Cassandra are employed to handle time-series data as well the unstructured bridge information model data. Standard XML-based modeling languages such as OpenBrIM and SensorML are adopted to manage semantically meaningful data and to support interoperability. Data interoperability and integration among different components of a bridge monitoring system that includes on-site computers, a central server, local computing platforms, and mobile devices are illustrated. The data management framework is demonstrated using the data collected from the wireless sensor network installed on the Telegraph Road Bridge, Monroe, MI.

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation

  • Jang, Shinae;Jo, Hongki;Cho, Soojin;Mechitov, Kirill;Rice, Jennifer A.;Sim, Sung-Han;Jung, Hyung-Jo;Yun, Chung-Bangm;Spencer, Billie F. Jr.;Agha, Gul
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.439-459
    • /
    • 2010
  • Structural health monitoring (SHM) of civil infrastructure using wireless smart sensor networks (WSSNs) has received significant public attention in recent years. The benefits of WSSNs are that they are low-cost, easy to install, and provide effective data management via on-board computation. This paper reports on the deployment and evaluation of a state-of-the-art WSSN on the new Jindo Bridge, a cable-stayed bridge in South Korea with a 344-m main span and two 70-m side spans. The central components of the WSSN deployment are the Imote2 smart sensor platforms, a custom-designed multimetric sensor boards, base stations, and software provided by the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. In total, 70 sensor nodes and two base stations have been deployed to monitor the bridge using an autonomous SHM application with excessive wind and vibration triggering the system to initiate monitoring. Additionally, the performance of the system is evaluated in terms of hardware durability, software stability, power consumption and energy harvesting capabilities. The Jindo Bridge SHM system constitutes the largest deployment of wireless smart sensors for civil infrastructure monitoring to date. This deployment demonstrates the strong potential of WSSNs for monitoring of large scale civil infrastructure.

A distributed piezo-polymer scour net for bridge scour hole topography monitoring

  • Loh, Kenneth J.;Tom, Caroline;Benassini, Joseph L.;Bombardelli, Fabian A.
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.183-195
    • /
    • 2014
  • Scour is one of the leading causes of overwater bridge failures worldwide. While monitoring systems have already been implemented or are still being developed, they suffer from limitations such as high costs, inaccuracies, and low reliability, among others. Also, most sensors only measure scour depth at one location and near the pier. Thus, the objective is to design a simple, low cost, scour hole topography monitoring system that could better characterize the entire depth, shape, and size of bridge scour holes. The design is based on burying a robust, waterproofed, piezoelectric sensor strip in the streambed. When scour erodes sediments to expose the sensor, flowing water excites it to cause the generation of time-varying voltage signals. An algorithm then takes the time-domain data and maps it to the frequency-domain for identifying the sensor's resonant frequency, which is used for calculating the exposed sensor length or scour depth. Here, three different sets of tests were conducted to validate this new technique. First, a single sensor was tested in ambient air, and its exposed length was varied. Upon verifying the sensing concept, a waterproofed prototype was buried in soil and tested in a tank filled with water. Sensor performance was characterized as soil was manually eroded away, which simulated various scour depths. The results confirmed that sensor resonant frequencies decreased with increasing scour depths. Finally, a network of 11 sensors was configured to form a distributed monitoring system in the lab. Their exposed lengths were adjusted to simulate scour hole formation and evolution. Results showed promise that the proposed sensing system could be scaled up and used for bridge scour topography monitoring.

다중온도센서를 통한 입체적인 호소 온도모니터링 평가 (Spatial Reservoir Temperature Monitoring using Thermal Line Sensor)

  • 황기섭;박동순;정우성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1002-1006
    • /
    • 2006
  • Temperature monitoring techniques per depth have been recognized as important information in the reservoir environmental issues. However, old measurement method by single temperature sensor and cable type has demerits not only for its limited measuring location but for its inconvenience of users. In this study, multi-channel temperature monitoring system was introduced and executed experiment for actual application feasibility evaluation. Both type of new techniques such as multi-channel addressable built-in temperature sensor and fiber optic multi sensor were tested in Daechung and Imha reservoir. As a result, it was proved that these kinds of temperature monitoring skills had very good performance and availability for a output of spatial, simultaneous thermal distribution focused on the user's convenience. And these measuring method and thermal data will be useful for providing basic information in a water resources investigation like reservoir stratification and environmental problems.

  • PDF

Sensor clustering technique for practical structural monitoring and maintenance

  • Celik, Ozan;Terrell, Thomas;Gul, Mustafa;Catbas, F. Necati
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.273-295
    • /
    • 2018
  • In this study, an investigation of a damage detection methodology for global condition assessment is presented. A particular emphasis is put on the utilization of wireless sensors for more practical, less time consuming, less expensive and safer monitoring and eventually maintenance purposes. Wireless sensors are deployed with a sensor roving technique to maintain a dense sensor field yet requiring fewer sensors. The time series analysis method called ARX models (Auto-Regressive models with eXogeneous input) for different sensor clusters is implemented for the exploration of artificially induced damage and their locations. The performance of the technique is verified by making use of the data sets acquired from a 4-span bridge-type steel structure in a controlled laboratory environment. In that, the free response vibration data of the structure for a specific sensor cluster is measured by both wired and wireless sensors and the acceleration output of each sensor is used as an input to ARX model to estimate the response of the reference channel of that cluster. Using both data types, the ARX based time series analysis method is shown to be effective for damage detection and localization along with the interpretations and conclusions.