• Title/Summary/Keyword: Environmental flow

Search Result 5,132, Processing Time 0.032 seconds

A Study on the Estimation of River Management Flow in Urban Basin (도시유역의 하천유지용수 산정에 관한 연구)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.377-385
    • /
    • 1996
  • This study aims at the estimation of a river management flow in urban basin analyzing Sinchun basin to be the tributary of Kumho river basin. The river management flow has to satisfy a low flow as natural flow and an environmental preservation flow estimated by a dilution flow to satisfy a target water quality in drought flow. Therefore for the estimation of a river management flow in Sinchun in this study, first Tank model as a basin runoff model estimates a low flow, a drought flow from a flow duration curve in Sinchun, second QUAL2E model as water quality model simulates water quality in Sinchun and estimates environmental preservation flow to satisfy a target water qua%its, BOD 8 mg/l by a dilution flow derived from Kumho river, Nakdong river and around water. And the river management flow is estimated by addition of a use flow and a loss flow to more flow between a low-flow and an environmental preservation flow.

  • PDF

Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin - (수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로-)

  • Kim, Gyeong hoon;Kwon, Heon gak;Ahn, Jung min;Kim, Sanghun;Im, Tae hyo;Shin, Dong seok;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs (총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석)

  • Hwang, Ha-sun;Rhee, Han-pil;Seo, Ji-yeon;Choi, Yu-jin;Park, Ji- hyung;Shin, Dong-seok;Lee, Sung-jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.

Assessment of environmental flows using hydrological methods for Krishna River, India

  • Uday Kumar, A.;Jayakumar, K.V.
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.161-175
    • /
    • 2018
  • Krishna River is significantly affected due to Srisailam dam from past 30 years. The impact of this hydraulic structure drastically reduced the minimum flow regime on the downstream, which made the river nearing to decaying stage. In the present paper, Environmental Flow called minimum flow values released for the dam are estimated with the help of three hydrological methods viz., Range of variability Approach (RVA), Desktop Reserve Model (DRM), and Global Environmental Flow Calculator (GEFC). DRM method suggested considering the intermediate values obtained from among the three methods to preserve the ecosystem on the downstream of the river, which amounts to an average annual allocation of 9378 Million Cubic Meter (MCM) which is equal to 23.11% of mean annual flow (MAF). In this regard GEFC and RVA methods accounted for 22% and 31.04% of MAF respectively. The results indicate that current reservoir operation policy is causing a severe hydrological alteration in the high flow season especially in the month of July. The study concluded that in the case of non-availability of environmental information, hydrological indicators can be used to provide the basic assessment of environmental flow requirements. It is inferred from the results obtained from the study, that the new reservoir operations can fulfil human water needs without disturbing Environmental Flow Requirements.

Water quality forecasting on upstream of chungju lake by flow duration (충주호 상류지역의 유황별 장래수질예측)

  • 이원호;한양수;연인성;조용진
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • In order to define about concern with discharge and water-quality, it is calculated drought flow, low flow, normal flow and wet flow in Chungju watershed from flow duration analysis. Water quality modeling study is performed for forecasting at upstream of Chungju lake. It is devided method of modeling into before and after the equipment of environmental treatment institution. And it is estimated the change of water quality. Before the equipment of environmental treatment, BOD concentration is increased from 23000 to 2006 years at all site and decrease on 2012 years. The rate of increasing BOD concentration is showed height between 2000 years and 2003 years most of all site. And after the equipment of environmental treatment, it is showed first grade of BOD water quality in most of sample site beside Jucheon river. The result of water quality modeling using drought flow showed that a lot of pollution occurred. And water quality using wet flow is good, so much discharge make more improve water quality than little discharge.

Efficiency Study of Measurement Method by Flow Duration (유황별 유속측정 방법에 따른 유효성 연구)

  • Ham, Sang In;Lee, Jeong Hwan;Kim, Dae Young;Ha, Don Woo;Kim, Yoon Soo;Jung, Kang-Young;Lee, Yeong Jae;Kim, Gyeong Hyeon;Kim, Young Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.462-469
    • /
    • 2018
  • There are differences in method and cycle of flow rate survey depending on purpose of the operating department. To verify and use results of flow data according to the purpose, flow data of the directly measured and tele monitoring system were compared to verify validity. Flow measurement in the Ministry of Environment is aimed at setting up a standard flow of target water quality for water quality management and securing flow data of low and normal water level seasons for water quality evaluation. In this study, correlation analysis result ($R^2$) of same time zone data by direct measurement and tele monitoring system (TMS) at Seombon D point, a unit watershed of Seomjin river, for six years ('10 ~ '15) according to implementation of Total Daily Maximum Load (TDML) was wading 0.716, boating 0.962 and on bridge 0.943, and effectiveness of measurement method was verified by characteristics of flow duration as a season of dry and low-water; normal and high water are appropriate for wading, boating, and on bridge respectively. Results revealed it is reasonable to use directly measured results using the wading and boating method for low water level and dry seasons, and TMS data for rainy seasons. It can be used important data for future policy decisions.

Evaluation of the Possibility of Daily Flow Data Generation from 8-Day Interval Measured Flow Data using SWAT-CUP (SWAT-CUP을 이용한 8일간격 유량측정자료의 일유량 확장 가능성 평가)

  • Jung, Jaewoon;Cho, Sohyun;Lim, Byungjin;Oh, Taeyoun;Ham, Sangin;Kim, Kapsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.595-600
    • /
    • 2012
  • This study is to assess the application of SWAT-CUP(Soil and Water Assessment Tool-Calibration Uncertainty Programs) and to extend daily flow data from 8-day interval flow data which has been measured by Korean Ministry of Environment(MOE). Model sensitivity analysis and calibration were performed with sequential uncertainty fitting(SUIF-2), which is one of the programs interfaced with SWAT, in the package SWAT-CUP. The most sensitive parameters were SOL_K.sol, CH_N2.rte, CN2.mgt, SOL_BD.sol, ALPHA_BF.gw, ALPHA_BNK.rte, SOL_AWC.sol, CH_K2.rte, SFTMP.bsn, GW_DELAY.gw. Following the sensitivity analysis, SWAT-CUP calibration was carried out using 8-day interval flow data from January 2008 to December 2010. The results were then assessed based on the visual agreement and simulated flow plots and the performance statistics generated $R^2$ and NSE which are 0.71 and 0.61 respectively. Results of these statistics indicated that there was a good agreement between the observed and simulated flow. To extend daily flow data from 8-day interval flow data, parameters, which were estimated by SWAT-CUP, re-entered for SWAT model. As a result, the observed flow data were found to reflect the trend of simulated flow data. From these results, it is thought that this method could be used to provide daily flow data using 8-day interval flow data.

Characteristics of the Pollutants Ronoff on the Tamjin A and B Watershed with Discharge Variation (유량변동에 따른 탐진 A와 B유역에서의 오염물질 유출 특성)

  • Park, Jinhwan;Lim, Byungjin;Jung, Jaewoon;Kim, Daeyoung;Oh, Taeyoun;Lee, Dongjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.917-925
    • /
    • 2012
  • In this study, we report the runoff characteristics of pollutants for Tamjin A and B watershed in Tamjin river basin using statistical analysis, such as correlation analysis and regression equation. Flow rate and water qualtiy data collected from 2 sampling sites(Tamjin A and B watershed) during 3 years(2009~2011) were analyzed for biochemical oxygen demand(BOD), total nitorgen(TN), total phosphorus(TP) and suspended solid(SS). The results showed that strong correlations were observed between flow rate and SS in Tamjin A, while weak correlations were observed among the BOD, TN, and TP. In Tamjin B, strong correlations were observed among the flow rate, SS and T-P except BOD and TP. Meanwhile, the values of $R^2$ for regression equations between flow rate and pollutants load were greater than 0.7. Results of these statistics indicated that there was a good agreement between flow rate and pollutants load. Also, the flow rate exponents of regression equations for BOD, TN, and TP were smaller than 1 in Tamjin A. In Tamjin B, flow rate exponents of regression equation for BOD and TP were smaller than 1. These results indicated that concentrations of BOD, TN, TP in Tamjin A and concentrations of BOD and TP were decreased as the flow rate was increased. This means that rater than nonpoint sources, point sources affect BOD, TN and TP in Tamjin A and BOD and TP in Tamjin B.

Evaluating Calibration Methods of Stream Flow for Water Quality Management (수질학적 관점에서의 수문모델 유출량 보정 방법 평가)

  • Jeon, Ji-Hong;Choi, Donghyuk;Kim, Jung-Jin;Kim, Taedong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.432-440
    • /
    • 2009
  • The effect of selecting hydrologic item for calculating objective function on calibration of stream flow was evaluated by Hydrologic Simulation Porgram-Fortran (HSPF) linked with Model Independent Parameter Optimizer (PEST). Daily and monthly stream flow and flow duration were used to calculate objective function. Automated calibration focused on monthly stream was proper to analyze seasonal or yearly water budget but not proper to predict daily stream flow or percent chance flow exceeded. Calibration result focused on flow duration is proper to predict precent chance flow exceeded but not proper to analyze water budget or predict peak flow. These results indicate that hydrologic item calculated for objective function on calibration procedure could influence calibration results and watershed modeler should select carefully hydrologic item for the purpose of model application. Current, the criteria of stream flow of Korean TMDL is generated based on percent chance flow exceeded, so flow duration should be included to calculate objective function on calibration procedure for the estimation of criteria of stream flow using hydrologic model.

Simulation System for Earthmoving Operation with Traffic Flow

  • Kyoungmin Kim;Kyong Ju Kim;Hyeon Jeong Cho;Sang Kyu Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1359-1363
    • /
    • 2009
  • The object of this research is to develop a simulation system for earthmoving operations in consideration of the impact of congestion in-between equipment and existing traffic flow around the site. The congestion in-between equipment and traffic flow affect work productivity. The conventional discrete event simulation, however, has limitations in simulating the flow of construction equipment. To consider the impact of congestion in-between equipment and existing traffic flow, in this paper, a multi-agent based simulation model that can realize characteristics of truck behavior more accurately to consider the impact of congestion was proposed. In this simulation model, multiple agents can identify environmental changes and adapt themselves to the new environment. This modeling approach is a better choice for this problem since it describes behavioral characteristics of each agent by sensing changes in dynamic surroundings. This study suggests a detailed system design of the multi-agent based simulation system.

  • PDF