• Title/Summary/Keyword: Environmental ecology flow

Search Result 166, Processing Time 0.022 seconds

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.

Ventilation Corridor Characteristics Analysis and Management Strategy to Improve Urban Thermal Environment - A Case Study of the Busan, South Korea - (도시 열환경 개선을 위한 바람길 특성 분석 및 관리 전략 - 부산광역시를 사례로 -)

  • Moon, Ho-Yeong;Kim, Dong-Pil;Gweon, Young-Dal;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.659-668
    • /
    • 2021
  • The purpose of this study is to propose a ventilation corridor management plan to improve the thermal environment for Busan Metropolitan City. To this end, the characteristics of hot and cool spots in Busan were identified by conducting spatial statistical analysis, and thermal image data from Landsat-7 satellites and major ventilation corridors were analyzed through WRF meteorological simulation. The results showed the areas requiring thermal environment improvement among hot spot areas were Busanjin-gu, Dongnae-gu, industrial areas in Yeonje-gu and Sasang-gu, and Busan Port piers in large-scale facilities. The main ventilation corridor was identified as Geumjeongsan Mountain-Baekyangsan Mountain-Gudeoksan Mountain Valley. Based on the results, the ventilation corridor management strategy is suggested as follows. Industrial facilities and the Busan Port area are factors that increase the air temperature and worsen the thermal environment of the surrounding area. Therefore, urban and architectural plans are required to reduce the facility's temperature and consider the ventilation corridor. Areas requiring ventilation corridor management were Mandeok-dong and Sajik-dong, and they should be managed to prevent further damage to the forests. Since large-scale, high-rise apartment complexes in areas adjacent to forests interfere with the flow of cold and fresh air generated by forests, the construction of high-rise apartment complexes near Geumjeongsan Mountain with the new redevelopment of Type 3 general residential area should be avoided. It is expected that the results of this study can be used as basic data for urban planning and environmental planning in response to climate change in Busan Metropolitan City.

A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model (머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구)

  • Go, Woo-Seok;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

The Distribution of DOM and POM and the Composition of Stable Carbon Isotopes in Streams of Agricultural and Forest Watershed Located in the Han River System (한강수계 농경지역 하천과 삼림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비)

  • Kim, Jai-Ku;Kim, Bom-Chul;Jung, Sung-Min;Jang, Chang-Won;Shin, Myoung-Sun;Lee, Yun-Kyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The runoff characteristics of organic matter in turbid water were investigated in eleven tributary streams of the Han River system, Korea. The flow-weighted event mean concentrations of organic matter ranged from 1.5 to 3.2 mg $L^{-1}$ of DOM and 2.2 of 29.1 mg $L^{-1}$ of POM, respectively. The SUVA value which reflects the proportion of humic substance in organic matters was higher during the rainfall season, meaning that the runoff of refractory form increase in this period. Stable carbon isotope ratios of both POM and DOM were different among streams, which reflect the sources of organic matter. DOM isotope ratios were less depleted of $^{13}C$ than that of POM by approximately 1 to $2%_{\circ}$ ${\delta}^{13}C$ of the several turbid streams (the Mandae Stream, the Jawoon Stream, and the Daegi stream) were heavier than those of clear streams. ${\delta}^{13}C$ values in the turbid upstream tributaries were similar to those of downstream reaches (such as the Soyang River, the Sum River, and the Seo River). From the ${\delta}^{13}C$ analysis of POM it could be calculated that $C_4$ pathway contributed approximately 15.9 to 23.6% of organic matter in several turbid upstream sites, and over 20% in the three sites of large downstream reaches. On the contrary it contributed only 9.1 to 12.8% in clear streams of forest watersheds. In the Soyang River, $C_4$ pathway organic matter contributed 8.8% of the DOM pool.

Hydrograph Separation and Flow Characteristic Analysis for Observed Rainfall Events during Flood Season in a Forested Headwater Stream (산지계류에 있어서 홍수기의 강우사상에 대한 유출수문곡선 분리 및 특성 분석)

  • Nam, Sooyoun;Chun, Kun-Woo;Lee, Jae Uk;Kang, Won Seok;Jang, Su-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • We examined the flow characteristics by direct runoff and base flow in a headwater stream during observed 59 rainfall events of flood season (June~September) from 2017 to 2020 yrs. Total precipitation ranged from 5.0 to 400.8 mm, total runoff ranged from 0.1 to 176.5 mm, and runoff ratio ranged from 0.1 to 242.9% during the rainfall events. From hydrograph separation, flow duration in base flow (139.3 days) was tended to be longer than direct runoff (78.3 days), while the contribution of direct runoff in total runoff (54.2%) was greater than base flow (45.8%). The total amount and peak flow of direct runoff and base flow had the highest correlation (p<0.05) with total precipitation and duration of rain among rainfall and soil moisture conditions. Dominant rainfall events for the total amount and peak flow of base flow were generated under 5.0~200.4 and 10.5~110.5 mm in total precipitation. However, when direct runoff occurred as dominant rainfall events, total amount and peak flow were increased by 267.4~400.8 and 169.0~400.8 mm in total precipitation. Therefore, the unique aspects of our study design permitted us to draw inferences about flow characteristic analysis with the contribution of base flow and/or direct runoff in the total runoff in a headwater stream. Furthermore, it will be useful for the long-term strategy of effective water management for integrated surface-groundwater in the forested headwater stream.

Wetland Habitat Assessement Utilizing TDI(Trophic Diatom Index) (부착돌말영양지수(TDI)를 활용한 습지환경 평가)

  • Kim, Seong-Ki;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.525-538
    • /
    • 2019
  • The purpose of this study was to analyze the habitat status and species diversity of benthic diatoms and estimate the applicability of TDI (Trophic Diatom Index) to obtain the basic data for the identification and management of created wetlands in the Nakdong River. We observed a total of 38 families and 173 species of benthic diatom during the survey period, and spring and autumn showed a similar number of species of 156 and 154, respectively. The result of the SOM (Self-Organizing Map) analysis showed that the distribution of benthic diatom was sensitive to environmental factors such as nutrient concentration and rainfall in each wetland. The cluster 1 was characterized by the survey sites of autumn mostly and consisted of points of high TDI, although the nutrients such as total phosphorus and total nitrogen were low, and the species number and abundance of diatoms were low. Conversely, cluster 4 was characterized by the survey sites of spring mostly and consisted of points of low TDI, even though total nitrogen was high. Considering that most of the created wetlands had the reduced inflow and outflow, the increased flow rate in the summer lowers nutrient values in autumn, and the species number and abundance of benthic diatom decreases due to the increase of turbidity, which reduces the light penetrations to the substrates. On the contrary, the TDI value is low in spring because the low water level causes insufficient substrate surface to the benthic diatoms, and it is too early for the establishment and development of saprophilous species. Although various studies have used TDI as an indicator for evaluating the habitat environment and water quality, it is not a good evaluation indicator in this study since the nutrient concentration in the wetlands mostly high as they have a low flow rate and are close to the stagnant area. Nevertheless, additional periodic surveys that comprehensively reflect the fact that the summer rainfall and inflow/outflow regulating function might affect the species diversity and distribution of benthic diatoms are necessary.

Habitat Characteristics of Benthic Macroinvertebrates at a Headwater Stream in the Yeonyeopsan (Mt.) (연엽산 산지계류에 있어서 저서성 대형무척추동물의 서식특성)

  • Jang, Su-Jin;Nam, Sooyoun;Kim, Suk-Woo;Koo, Hyo-Bin;Kim, Ji-Hyeon;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.334-344
    • /
    • 2020
  • A total of 24 families, 44 species, and 658 benthic macroinvertebrates were identified, and Ecdyonurus dracon Kluge (13%) was the dominant species in forested streams within the Yeonyeopsan (Mt.). A total of four habit categories (i.e., clingers (56%), burrowers (19%), swimmers (14%), and sprawlers (56%)) were identified, and clingers were the dominant habit at all survey points except point one (UP1). Habitat characteristics were depended on the hydraulic factors (e.g., flow velocity, depth, and substrates), water quality (e.g., DO and water temperature), and the habitat characteristics were differed in the riffle, which has a faster the flow velocity, compared by in the stagnant pool. In other words, in riffles, the clingers dominated in high flow velocity with the large maximum and median grain size for substrates in the habitats regardless of depth, but the burrowers and sprawlers were dominant in low flow velocity with the small maximum and median grain size for substrates in the habitats. Moreover, DO and flow velocity were in positive correlation (y = 0.6666x - 0.659, R2 = 0.0851), and the habitat for burrowers was wider than that for sprawlers or clingers. The water depth was negatively correlated with water temperature (y = -26.397x + 283.87, R2 = 0.1802) since the water temperature is more sensitive to insolation in shallow depth. pH was positively correlated with water temperature. The investigation of the habitat characteristics by separating the relations between pH and DO in upstream and downstream showed the low pH and high DO in the upstream with a high crown density of 68%, regardless of community composition. On the other hand, high pH and low DO in the downstream with a relatively low crown density of 51%. It was considered that the riparian forest played a role in suppressing the growth of attached algae and the controlling water temperature in headwater streams. Our findings identified the habitat characteristics of benthic macroinvertebrates in a headwater stream. We expected that the finding can provide reference data for suggesting conservation and management plans in a headwater stream and increasing academic value.

Characteristics of Pollution Loading from Kyongan Stream Watershed by BASINS/SWAT. (BASINS/SWAT 모델을 이용한 경안천 유역의 오염부하 배출 특성)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Lee, Sae-Bom
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.200-211
    • /
    • 2009
  • A mathematical modeling program called Soil and Water Assessment Tool (SWAT) developed by USDA was applied to Kyongan stream watershed. It was run under BASINS (Better Assessment Science for Integrating point and Non-point Sources) program, and the model was calibrated and validated using KTMDL monitoring data of 2004${\sim}$2008. The model efficiency of flow ranged from very good to fair in comparison between simulated and observed data and it was good in the water quality parameters like flow range. The model reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The results of pollutant loads estimation as yearly (2004${\sim}$2008), pollutant loadings from 2006 were higher than rest of year caused by high precipitation and flow. Average non-point source (NPS) pollution rates were 30.4%, 45.3%, 28.1% for SS, TN and TP respectably. The NPS pollutant loading for SS, TN and TP during the monsoon rainy season (June to September) was about 61.8${\sim}$88.7% of total NPS pollutant loading, and flow volume was also in a similar range. SS concentration depended on precipitation and pollution loading patterns, but TN and TP concentration was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. SWAT based on BASINS was applied to the Kyongan stream watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and non-point sources in watershed scale.

Continuity Simulation and Trend Analysis of Water Qualities in Incoming Flows to Lake Paldang by Log Linear Models (로그선형모델을 이용한 팔당호 유입지류 수질의 연속성 시뮬레이션과 경향 분석)

  • Na, Eun-Hye;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.336-343
    • /
    • 2003
  • Two types of statistical models, simple and multivariate log linear models, were studied for continuity simulation and trend analysis of water qualities in incoming flows to Lake Paldang. Water quality is a function of one independent variable (flow) in the simple log linear model, and of three different variables (flow, time, and seasonal cycle) in multivariate model. The independent variables act as surrogate variables of water quality in both models. The model coefficients were determined by the monthly data. The water qualities included 5-day Biochemical Oxygen Demand ($BOD_5$), Total Nitrogen (TN), and Total Phosphorus (TP) measured from 1995 to 2000 in the South and the North branches of Han River and the Kyoungan Stream. The results indicated that the multivariate model provided better agreements with field measurements than the simple one in a31 attempted cases. Flow dependency, seasonality, and temporal trends of water quality were tested on the determined coefficients of the multivariate model. The test of flow dependency indicated that BOD concentrations decreased as the water flow increased. In TN and TP concentrations, however, there were no discernible flow effects. From the temporal trend analyses, the following results were obtained: 1) no trends on BOD at all three upstreams, 2) increase on TN at the South Branch and the Kyoungan Stream, 3)decrease on TN at the North Branch,4) no trends on TP at the North and the South Branches and 5) increase on TP at the Kyoungan Stream by 3 to 8% per years. The seasonality test showed that there were significant seasonal variations in all three water qualities at three incoming flows.

Estimation of the Total Terrestrial Organic Carbon Flux of Large Rivers in Korea using the National Water Quality Monitoring System (수질측정망을 이용한 국내 대하천 하구를 통한 총유기탄소 유출량 산정과 비교)

  • Park, Hyung-Geun;Ock, Giyoung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.549-556
    • /
    • 2017
  • Rivers continuously transport terrestrial organic carbon matter to the estuary and the ocean, and they play a critical role in productivity and biodiversity in the marine ecosystem as well as the global carbon cycle. The amount of terrestrial organic carbon transporting from the rivers to ocean is an essential piece of information, not only for the marine ecosystem management but also the carbon budget within catchment. However, this phenomenon is still not well understood. Most large rivers in Korea have a well-established national monitoring system of the river flow and the TOC (Total Organic Carbon) concentration from the mountain to the river mouth, which are fundamental for estimating the amount of the TOC flux. We estimated the flux of the total terrestrial organic carbon of five large rivers which flow out to the Yellow Sea, using the data of the national monitoring system (the monthly mean TOC concentration and the monthly runoff of river flow). We quantified the annual TOC flux of the five rivers, showing their results in the following order: the Han River ($18.0{\times}10^9gC\;yr^{-1}$)>>Geum River ($5.9{\times}10^9gC\;yr^{-1}$)>Yeongsan River ($2.6{\times}10^9gC\;yr^{-1}$)>Sumjin River ($2.0{\times}10^9gC\;yr^{-1}$)>>Tamjin River ($0.2{\times}10^9gC\;yr^{-1}$). The amount of the Han River, which is the highest in the Korean rivers, corresponds to be 4% of the annual total TOC flux of in the Yellow River, and moreover, to be 0.6% of Yangtze River.