• Title/Summary/Keyword: Environmental durability

Search Result 851, Processing Time 0.025 seconds

A Few Remarks on the Alkali-aggregate Reaction of Recycled-glass Concrete

  • Inada, Yoshinori;Kinoshita, Naoki;Matsushita, Seigo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.549-554
    • /
    • 2001
  • The authors have proposed that waste glass, which is crushed to pieces, can be used as a concrete aggregate. At the present time, recycled-glass concrete is used for sidewalk concrete blocks and pavement as glass is ornamental. However, in cases where recycled-glass concrete is used for structural concrete, strength and durability are required as structural concrete is exposed to the weather. Glass that is used generally is a mixture of SiO$_2$, Na$_2$O and CaO. SiO$_2$is the most likely cause of alkali-aggregate reaction when waste glass was used for concrete aggregate. In this study, an alkali-aggregate reaction test that is one of the important tests related to durability of aggregate was carried out far discussion of utilization of waste glass for concrete aggregate. From the results of the tests, it is found that glass is a reactive aggregate. The pessimum proportion of glass is about 75%. Then the cases of using fly ash, blast furnace slag and artificial zeolite for admixture materials were also examined for the purpose of prevention of alkali-aggregate reaction. from the results of the test, it was found that using them is an effective way to prevent alkali-aggregate reaction. The compressive strength in the cases of using admixture materials is larger than that without admixture materials.

  • PDF

Durability of Corrugated Fiberboard Container for Fruit and Vegetables by Vibration Fatigue at Simulated Transportation Environment (모의 수송 환경에서의 청과물 골판지 상자의 진동 피로에 따른 내구성)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.89-94
    • /
    • 2005
  • The compression strength of corrugated fiberboard container for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about from 30 to 40 percent owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard container for packaging the fruit and vegetables under simulated transportation environment. The vibration test system was constructed to simulate the land transportation using truck. After the package with corrugated fiberboard container was vibrated by vibration test system at various experimental conditions, the compression test for the package was performed. The compression strength of corrugated fiberboard container decreased with loading weight and vibrating time. The multiple nonlinear regression equation for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibrating time. The influence of loading weight on the decreasing rate of corrugated fiberboard container was larger than other variables.

Experimental assessment for friendly-environment functional Inorganic mixed rubber asphalt Seismic waterproof strengthening method (친환경 기능성 무기질계와 고무아스팔트를 혼합한 내진방수 보강공법에 대한 실험적 평가)

  • Baek, Jong-Myeong;Hwang, Young-Ho;Shon, Jung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1802-1808
    • /
    • 2008
  • Recent interest in the construction sector, rising about the environment and eco-friendly recycled material resources, and increase the development of method But despite these efforts, and the diverse functional and structural changes in the structure can not be an appropriate response to the functional waterproof structural changes in the structures and appropriate response Diversification does not waterproof and functional issues such as durability, and which are occurring due to the structure to secure stability and durability, never sees the conservative economic losses due to import constructability reinforcement situation. Therefore, this study applies to structure the existing waterproof method (hereinafter referred to as structures water-resistant methode), and to review recent issues of environmental pollution and resource waste, and taking on environmental issues, such as Revelation and functional Inorganic mixed in a way to leverage the manufacturing water-resistant material "Re Inorganic, functional and environmentally friendly high-viscosity mix asphalt waterproof rubber reinforcements, and taking conservative" for the characterization and performance assessment to the issues raised by the structure and whether the judge would respond.

  • PDF

The Monitoring System Using Multi Antenna GPS for Weak Slope (Multi Antenna GPS를 이용한 취약사면 상시모니터링 시스템)

  • Noh, Won-Seok;Kim, Wan-Jong;Jang, Hyun-Ick;Kim, Hak-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.677-694
    • /
    • 2009
  • While the budget has been allocated more for repairs and reinforcements, casualties are gradually increased due to slope disaster. Slope disaster causes road damaged as well as casualties. It also causes significant social and economic loss. The measurement device, which is installed inside ground of slope like inclinometer, has the high loss rate when slope is being slided. The electric type and the vibrating wire type have low durability because of corrosion. To cover the demerit of the present slope monitoring, the measurement method using the Multi-Antenna GPS has been developed. The Multi-Antenna GPS has been installed in the local slope as the regular monitoring system for slope. Although the initial cost of the Multi-Antenna GPS for installation is high, the additional cost is low. So it is the suitable method for large slope. The regular monitoring system using the Multi-Antenna GPS is the suitable measurement method for watching slope collapse, which is occurred widely, because it is economical, has high durability, and collects data with high resolution.

  • PDF

Properties of concrete incorporating sand and cement with waste marble powder

  • Ashish, Deepankar K.;Verma, Surender K.;Kumar, Ravi;Sharma, Nitisha
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.145-160
    • /
    • 2016
  • Marble is a metamorphic rock used widely in construction which increases amount of marble powder obtained from it. Marble powder is a waste product obtained from marble during its processing. Marble waste is high in calcium oxide content which is cementing property but it creates many environmental hazards too if left in environment or in water. In this research, partial replacement of cement and sand by waste marble powder (WMP) has been investigated. Seven concrete mixtures were prepared for this investigation by partially replacing cement, sand with WMP at proportions of 0%, 10% and 15% by weight separately and in combined form. To determine compressive strength, flexural strength and split tensile strength of concrete made with waste marble powder, the samples at the curing ages of 7, 28 and 90 days was recorded. Different tests of durability were applied on samples like ultrasonic pulse wave test, absorption and sorptivity. For further investigation all the results were compared and noticed that WMP has shown good results and enhancing mechanical properties of concrete mix on partially replacing with sand and cement in set proportions. Moreover, it will solve the problem of environmental health hazard.

The Study of social factors toward Academic Satisfaction in E-Learning Education

  • Kim, Kyung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.135-139
    • /
    • 2016
  • This paper investigates the empirical implications. The research question of this study is to verify the influences of psychological and environmental factors toward performance satisfaction and durability of learning in E-Learning University. For empirical verification, a survey was conducted targeting 500 students in E-learning Universities. The results show that actional environment on academic satisfaction in learning is the most important factor followed by physical environment, internal motivation, and academic burnout. The effect of psychological factors on learning persistence was important in the order of academic vision, internal motivation, actional environment and physical environment. The effect of academic satisfaction on learning durability proved to be statistically significant. The results suggest that actional environment should be considered with top priority to increase the academic satisfaction. learning satisfaction, academic vision, and academic satisfaction to enhance students' intention to continue studies are important. Academic burnout has a negative effect on both academic satisfaction and learning persistence, suggesting that this aspect should be properly addresses. The effects of student background variables in E-learning were explored.

A fuzzy expert system for diagnosis assessment of reinforced concrete bridge decks

  • Ramezanianpour, Ali Akbar;Shahhosseini, Vahid;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.281-303
    • /
    • 2009
  • The lack of safety of bridge deck structures causes frequent repair and strengthening of such structures. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of realistic and accurate assessment system for the bridge decks. The purpose of the present research was to develop a realistic expert system, called Bridge Slab-Expert which can evaluate reasonably the condition as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the structural and environmental effects. The diagnosis assessment of deck slabs due to structural and environmental effects are developed based on the cracking in concrete, surface distress and structural distress. Fuzzy logic is utilized to handle uncertainties and imprecision involved. Finally, Bridge Slab-Expert is developed for prediction of safety and remaining service life based on the chloride ions penetration and fick's second law. Proposed expert system is based on user-friendly GUI environment. The developed expert system will allow the correct diagnosis of concrete decks, realistic prediction of service life, the determination of confidence level, the description of condition and the proposed action for repair.

Computer-aided approach of parameters influencing concrete service life and field validation

  • Papadakis, V.G.;Efstathiou, M.P.;Apostolopoulos, C.A.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Over the past decades, an enormous amount of effort has been expended in laboratory and field studies on concrete durability estimation. The results of this research are still either widely scattered in the journal literature or mentioned briefly in the standard textbooks. Moreover, the theoretical approaches of deterioration mechanisms with a predictive character are limited to some complicated mathematical models not widespread in practice. A significant step forward could be the development of appropriate software for computer-based estimation of concrete service life, including reliable mathematical models and adequate experimental data. In the present work, the basis for the development of a computer estimation of the concrete service life is presented. After the definition of concrete mix design and structure characteristics, as well as the consideration regarding the environmental conditions where the structure will be found, the concrete service life can be reliably predicted using fundamental mathematical models that simulate the deterioration mechanisms. The prediction is focused on the basic deterioration phenomena of reinforced concrete, such as carbonation and chloride penetration, that initiate the reinforcing bars corrosion. Aspects on concrete strength and the production cost are also considered. Field observations and data collection from existing structures are compared with predictions of service life using the above model. A first attempt to develop a database of service lives of different types of reinforced concrete structure exposed to varying environments is finally included.

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

Performance Based Evaluation of Concrete Chloride Diffusion Resistance from Wind Speed-Sunlight Exposure Time Curing Conditions of Climate Change (기후변화에 대한 풍속과 일조시간의 콘크리트 염화물확산 저항성의 성능중심평가)

  • Kim, Tae-Kyun;Cho, Chul-Min;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.601-609
    • /
    • 2016
  • Recently, extreme climate change has been occurring globally not only in the simple form of temperature increases but also in a wide range of extreme climatic events, such as abnormal drought conditions and frequent typhoons. In addition, climate change is delaying the construction period of concrete structures, increasing related economic losses. Forcing construction projects for completion without considering climate change is leading to concrete quality deterioration, poor quality constructions, and consequent casualties and property damage. Therefore, to address these problems and provide a countermeasure to climate change, the present study selected wind speed, and sunlight exposure time as the most important curing conditions among the climate factors affecting concrete structures and examined their effects on the curing and durability of concrete structures. In addition, for the analysis of the experimental results, this study proposed a process of performance based evaluation (PBE) of concrete strength and durability using a method of Satisfaction Curve (SC) generation.