• 제목/요약/키워드: Environmental damage assessment

검색결과 503건 처리시간 0.027초

국부 부식을 가지는 심해저 파이프라인의 구조응답에 대한 전산 해석적 연구 (Computational Analysis of Structural Behavior of Subsea Pipelines with Local Corrosion)

  • 최광호;이치승;유동만;구본용;송준규;이제명
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.100-110
    • /
    • 2015
  • To meet the increasing demand for energy around the world, offshore and subsea energy development is constantly being conducted. This trend is accompanied by an increasing demand for pipeline installation, which brings numerous problems, including those related to accessibility, high pressure, and corrosion. Among these, corrosion is a primary factor in pipeline fractures, and can cause severe environmental and industrial damage. Hence, accurate corrosion assessment for corroded pipelines is very important. For this reason, the present study investigated the mechanical behavior of an idealized corroded subsea pipeline with an internal/external pressure load using the commercial FEA code ABAQUS. Then, the analysis result was compared with corrosion assessment codes such as ASME B31G, DNV RP F101, ABS. Finally, a fitness-for-service assessment was conducted.

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.

전국 단위 홍수위험도 평가를 위한 지수 개발과 미래 전망 (Development of index for flood risk assessment on national scale and future outlook)

  • 김대호;김영오;지희원;강태호
    • 한국수자원학회논문집
    • /
    • 제53권5호
    • /
    • pp.323-336
    • /
    • 2020
  • 기후변화로 인하여 한국의 연 강수량은 20세기부터 증가해 왔으며 미래에도 계속 증가할 것이라 전망되고 있다. 이와 함께 홍수 발생 가능성이 동반 상승하고 있기에 합리적인 홍수위험도 평가에 기반한 국가 단위 적응정책 수립이 필요하다. 이에 본 연구는 전국의 홍수위험도를 일괄적으로 평가할 수 있는 체계를 정의하고 홍수위험지수(Flood Risk Index, FRI)를 산정했다. IPCC AR5의 개념을 참고하여 위험도를 위해, 노출, 대응능력의 조합으로 평가하는 체계를 확립하였다. FRI는 자료 기반으로 산출되었으며, 요소별 가중치를 부여하여 설명력 향상을 도모하였다. FRI와 피해자료간 스피어만(Spearman) 상관성 분석을 한 결과 적절한 수준으로 잠재적인 홍수피해 크기를 평가할 수 있다는 것이 검증되었다. 미래 홍수위험도 평가를 위해 HadGEM3-RA 기반의 RCP 4.5, 8.5 시나리오를 투영했을 때 21세기 초, 중반에는 약화되었다가 21세기 말엔 현재보다 높은 위험도를 보이는 경향이 있었다.

A Similarity Weight-based Method to Detect Damage Induced by a Tsunami

  • Jeon, Hyeong-Joo;Kim, Yong-Hyun;Kim, Yong-Il
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.391-402
    • /
    • 2016
  • Among the various remote sensing sensors compared to the electro-optical sensors, SAR (Synthetic Aperture Radar) is very suitable for assessing damaged areas induced by disaster events owing to its all-weather day and night acquisition capability and sensitivity to geometric variables. The conventional CD (Change Detection) method that uses two-date data is typically used for mapping damage over extensive areas in a short time, but because data from only two dates are used, the information used in the conventional CD is limited. In this paper, we propose a novel CD method that is extended to use data consisting of two pre-disaster SAR data and one post-disaster SAR data. The proposed CD method detects changes by using a similarity weight image derived from the neighborhood information of a pixel in the data from the three dates. We conducted an experiment using three single polarization ALOS PALSAR (Advanced Land Observing Satellite/Phased Array Type L-Band) data collected over Miyagi, Japan which was seriously damaged by the 2011 east Japan tsunami. The results demonstrated that the mapping accuracy for damaged areas can be improved by about 26% with an increase of the g-mean compared to the conventional CD method. These improved results prove the performance of our proposed CD method and show that the proposed CD method is more suitable than the conventional CD method for detecting damaged areas induced by disaster.

해양 환경하 콘크리트 교량의 염해환경 성능평가 연구 (A Study on the Evaluation of the Environmental Performance of Salt Damage in Concrete Bridges under Marine Environment)

  • 채원규;이명구;손영현;홍성욱
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.60-69
    • /
    • 2018
  • This study aims to investigate in the assessment of salt damage conditions in concrete structures under marine environment conditions. It aims also to improve the durability of new concrete bridge through applying the life prediction method of salt damaged bridges. As measuring chloride contents of these bridges on the southwest coastal area, it is shown that the average amount of chloride on these surfaces close to shore is $10.5kg/m^3$. This figure is much higher than that of the Standard Specification for Concrete($1.5kg/m^3{\sim}2.5kg/m^3$). In contrast, it is shown the average amount of chloride on these surfaces in tide zone is $13.1kg/m^3$. Its figure is much lower than that of the Standard Specification for Concrete($20kg/m^3$). And the life of bridges is estimated about 17 years. To improve the durability for salt damage, these bridges are applied to surface treatment method which the replacement rate of furnace slag is 60%. Under this condition, it is expected to be 110 years. Consequently, it is clear that the use of slag replacement rate, surface treatment agent, and anti-corrosion agent to control chloride penetration effects of a submerge-based concrete bridge will be required.

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • 제6권2호
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.

한국형 태풍 영향예보 구축을 위한 연구 -현황 및 구성- (Construction of Typhoon Impact Based Forecast in Korea -Current Status and Composition-)

  • 나하나;정우식
    • 한국환경과학회지
    • /
    • 제32권8호
    • /
    • pp.543-553
    • /
    • 2023
  • Weather forecasts and advisories provided by the national organizations in Korea that are used to identify and prevent disaster associated damage are often ineffective in reducing disasters as they only focus on predicting weather events (World Meteorological Organization(WMO ), 2015). In particular, typhoons are not a single weather disaster, but a complex weather disaster that requires advance preparation and assessment, and the WMO has established guidelines for the impact forecasting and recommends typhoon impact forecasting. In this study, we introduced the Typhoon-Ready System, which is a system that produces pre-disaster prevention information(risk level) of typhoon-related disasters across Korea and in detail for each region in advance, to be used for reducing and preventingtyphoon-related damage in Korea.

Development of a Cost-benefit Model for the Management of Structural Risk on Oil Facilities in Mexico

  • Leon, David-De;Alfredo H-S. Ang
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.19-23
    • /
    • 2002
  • A reliability-based cost-benefit model for the risk management of oil platforms in the formulation of optimal decisions based on life-cycle consideration is proposed. The model is based on structural risk assessments and the integration of social issues and economics into the management decision process. Structural risks result from the platform's exposure to the random environmental loading associated with the offshore site where it is located. Several alternative designs of a typical platform are proposed and assessed from the cost-effectiveness viewpoint. This assessment is performed through the generation of cost/benefit relationships that are used, later on, to select the optimal design.

  • PDF

공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가 (Assessment of Regional Seismic Vulnerability in South Korea based on Spatial Analysis of Seismic Hazard Information)

  • 이선영;오석훈
    • 자원환경지질
    • /
    • 제52권6호
    • /
    • pp.573-586
    • /
    • 2019
  • 우리나라 전역을 대상으로 공간 분석 기반 지진 위험 지도를 작성하고 지진 취약 지역을 평가하였다. 지진 피해에 영향을 미치는 지질학적 특성을 고려하여 지표를 선정하였으며, 지진 활동 위험과 관련된 확률론적 지진 위험도 및 단층 특성, 지진 피해 위험과 연관된 기반암 심도 정보가 이용되었다. 각 지표는 정규 크리깅, 선 밀도 및 가변적 지역 평균 기반 단순 크리깅과 같은 GIS 및 지구 통계학 기법을 활용하여 공간 정보로 구축되었다. 구축된 세 가지 공간 정보는 연구 목적, 자료의 해상도 및 정확도에 따라 가중치를 할당하여 통합되었다. 지진 활동 위험 지표인 확률론적 지진 위험도와 단층 선 밀도의 경우 데이터의 불확실성이 비교적 크기 때문에 경향성 만을 반영하고자 먼저 가중 합한 후, 지진 피해 위험 지표인 기반암 심도 분포와 통합되었다. 이를 통해 세 가지 공간 자료의 분석에 기반한 지진 위험 지도가 작성되었으며, 우리나라 남동부와 북서부 지역이 지진 위험도가 높은 것으로 평가되었다. 본 연구 결과는 지진 재해를 최소화하기 위한 지진 대응 시스템을 구축하는데 기초 자료로 활용될 수 있을 것으로 기대된다.