• Title/Summary/Keyword: Environmental conditions

Search Result 11,391, Processing Time 0.038 seconds

Essential Oil Ingredient and Metabolites Analyses in Savory (Satureja hortensis) (세이보리(S. hortensis)의 정유성분과 대사체 분석에 대하여)

  • Shin, Gyung-Soon;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • The relationship between environmental growth conditions of savory(Satureja hortensis) and Zn and vitamin B3 has been previously reported. Based on these results, HPLC and GC-MS were used to investigate the levels of phenolic compounds and perform metabolite analysis, respectively, in plants collected from different areas. Differences were observed in the levels of polyphenols and flavonoids depending on sampled areas and natural conditions. Next, HPLC and metabolite analyses confirmed the presence of bioactive substances. The results also showed that the longer the storage time, the higher was the content of carvacrol and of rosmarinic acid. Finally, the difference in the active ingredients was minimal when plants were cultivated under growth conditions similar to those in the place of origin.

Effects of light condition in the continuous mass cultivation of microalgae Scenedesmus dimorphus (미세조류 Scenedesmus dimorphus 연속 대량배양 운전에 있어 광 조건이 성장에 미치는 영향)

  • Joo, Sung-jin;Hwang, Hyeon-jeong;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.319-323
    • /
    • 2015
  • This study investigated the effects of the light conditions on the productivity of scenedesmus dimorphus in the continuous mass cultivation system. To compare the algal productivity according to the light conditions, S. dimorphus was cultivated continuously under the wide range of light intensity(200-600 PPFD) and various light wavelength(white light and red-blue mixed light). After 100 days of cultivation under the different light intensity, the productivity of S. dimorphus increased as light intensity decreased. So, the productivity was maximized as 100 mg/L/d when light intensity was 200 PPFD. In case of light wavelength, the productivity of S. dimorphus was enhanced about 20% with the white light compared to that of the red-blue mixed light. Consequently, the optimal light conditions for the continuous mass cultivation of S. dimorphus were 200 PPFD as light intensity and white light as light wavelength.

Modelling of Drying Shrinkage for Different Environmental Conditions (환경인자를 고려한 건조수축의 예측모델 개발)

  • 한만엽
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.111-120
    • /
    • 1996
  • Drying shrinkage is a very important properties of concrete, which is affected by environmental conditions. The environmental conditions are temperature, relative humidity, and wind speed, which is quite variable and its effct on drying shrinkage is quite complex, too. In this study, environmental effects on drying shrinkage wrer integrated into one variable-evaporation rate. In several different environmental conditions, evaporation rate was measured with Evaporometer and compared with PCA chart, and also compared with measured drying shirnkage to verify the possibility of being a single parameter. The results are summarized in a prediction chart and prediction equation for drying shrinkage.

Atmospheric Corrosion of Hot Dip Zinc Coated Steel in Coastal and Rural Areas of Vietnam

  • Tru, Nguyen Nhi;Duyen, Le Khac;Han, Tran Mai
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.241-246
    • /
    • 2017
  • The comparative results of corrosion testing in humid tropical atmosphere in rural and coastal areas for hot dipped zinc coatings are presented below. The test was conducted in outdoor conditions over a period of five years. The mass loss and other performance characteristics of two types of zinc coatings were evaluated, analysed and discussed in relation to the climatic and environmental parameters. The corrosion rates of the coatings exposed to coastal conditions were about three times higher than the corrosion rates appreciated in rural conditions. The data demonstrates that the corrosion process obeys an equation of the form $M=At^n$, where M is the loss of metal and t is the time of exposure. A and n are constants which values depend on the environmental characteristics and the physicochemical behavior of the corrosion products respectively. Corrosion is strongly influenced by atmospheric time of wetness (TOW) and airborne salinity. The nature and composition of corrosion products are also considered. Simonkolleite, a major crystalline phase, was found in the zinc corrosion products exposed to coastal conditions, while zinc hydroxide and zinc hydrosulfate are easily found in rural settings.

Development of Numerical Analysis Technique of Thermal Flows for Experiment of Combined Weapon Systems (복합무기체계 실험을 위한 열유동 수치해석 기법 개발)

  • Kim, Sung-Dae;Tyoo, Seong-Tyoul;Baek, Sang-Hwa;Lee, Jeong-Yong;Park, So-Jin;Kim, Chul-Ju;Ko, Han-Seo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.397-400
    • /
    • 2008
  • A numerical analysis has been performed in this study to predict thermal behaviors of combined weapon systems in a large environmental tester. Also, temperature distributions of the materials of the system have been measured for the experimental conditions. The calculated thermal flow characteristics and the measured temperature distributions of the materials for the weapon systems have been analyzed to prepare for field tests in the environmental tester. The boundary conditions of the analysis are composed of inlet and outlet conditions of the environmental tester with various pressures and the limit of low temperature of -25$^{\circ}$C. The soaking time of the system in the environmental tester has been obtained by developed programs in this study to carry out the experiment in the predicted conditions.

  • PDF

Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles (외부온도가 수송용 메탄올연료전지 성능에 미치는 영향)

  • Han, Chang-Hwa;Jung, Dae-Seung;Choi, Ji-Sun;Han, Sang-Hun;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Impoundments Increase Potential for Phosphorus Retention and Remobilization in an Urban Stream

  • Vo, Nguyen Xuan Que;Doan, Tuan Van;Kang, Hojeong
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.175-184
    • /
    • 2014
  • Weirs are conventional structures that control water level and velocity in streams to facilitate water resource management. Despite many weirs built in streams, there is little information how weirs change hydrology regime and how that translates to sediment and phosphorus (P) responses. This study evaluated the influence of weirs on P retention and mobilization in an urban tributary of the Han River in Korea. Total P concentrations in sediments upstream of weirs were higher than the downstream site, mainly due to the increase of potentially available fractions (labile P and aluminum- and iron-bound P) (p < 0.05). Equilibrium phosphorus concentrations ($EPC_o$) were lower than soluble reactive phosphorus (SRP) concentrations of stream waters, but there was an increasing trend of sediment $EPC_o$ upstream of weirs compared to the downstream site (p < 0.001) indicating a greater potential for P release upstream of weirs. Sediment core incubation showed that SRP release rates upstream of weirs were higher than the downstream site under anoxic conditions of the water column (p < 0.01), but not under oxic conditions. SRP release rates under anoxic conditions were greater than that measured under oxic conditions. Un-neutral pH and increased temperature could also enhance SRP release rates upstream of weirs. We conclude that weirs can increase P retention within stream sediments and potentially promote significant P releases into waters, which in turn cause eutrophication.

Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks

  • Kim, Daehyun;Ohr, Sewon
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Background: Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results: From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon-Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions: The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

The ecosystem modelling for enhancement of primary productivity in Kamak Bay (가모만에서의 기초생산력 향상방안에 관한 생태계모델링)

  • Lee, Dae-In;Jo, Eun-Il;Park, Cheong-Gil
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.575-586
    • /
    • 1999
  • From the environmental aspects, primary productivity of phytoplankton plays the most improtant role in enhancement of marine culture oyster production. This study may be divided into two branches; one is estimation of maximum oyster meat production per unit facility(Carrying Capacity) under the present enviromental conditions in Kamak Bay, the other is improvement of carrying from increase of primary productivity by changing the environmental conditions that cause not ot form an unfavorable environment such as the formation of oxygen deficient water mass using the eco-hydrodynamic model. By simulation of three-dimensional hydrdynamic model and ecosystem model, the comparison between observed and computed data showed good agreement. The results of sensitivity analysis showed that phytoplankton maximum growth rate was the most important parameter for phytoplankton and dissolved oxygen. The estimation of mean primary productivity of Wonpo, Kamak, Pyongsa, and Kunnae culture grounds in Kamak Bay during culturing period were 3.73gC/$m^2$/d, 2.12gC/$m^2$/d, 1.98gC/$m^2$/d, and 1.26gC/$m^2$/d, respectively. Under condition not ot form the oxygen deficient water mass, four times increasing of pollutants loading as much as the present loading from river increased mean primary productivity of whole culture grounds to 4.02gC/$m^2$/d. Sediment N, P fluxes that allowed for 35% increasing from the present conditions increased mean primary productivity of whole culture grounds to 3.65gC/$m^2$/d. Finally, ten times increasing of boundary loadings from the present conditions increased mean primary productivity of whole culture grounds to 3.95gC/$m^2$/d. The maximum oyster meat production per year and that of unit facility in actual oyster culture grounds under the present conditions were 6,929ton and 0.93ton, respectively. This 0.93ton/unit facility is considered to be the carrying capacity in study area, and if the primary productivity is increased by changing the environmental conditions, oyster production can be increased.

  • PDF

Optimization of coagulation conditions for pretreatment of microfiltration process using response surface methodology

  • Jung, Jungwoo;Kim, Yoon-Jin;Park, Youn-Jong;Lee, Sangho;Kim, Dong-ha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • The application of coagulation for feed water pretreatment prior to microfiltration (MF) process has been widely adopted to alleviate fouling due to particles and organic matters in feed water. However, the efficiency of coagulation pretreatment for MF is sensitive to its operation conditions such as pH and coagulant dose. Moreover, the optimum coagulation condition for MF process is different from that for rapid sand filtration in conventional drinking water treatment. In this study, the use of response surface methodology (RSM) was attempted to determine coagulation conditions optimized for pretreatment of MF. The center-united experimental design was used to quantify the effects of coagulant dose and pH on the control of fouling control as well as the removal organic matters. A MF membrane (SDI Samsung, Korea) made of polyvinylidene fluoride (PVDF) was used for the filtration experiments. Poly aluminum chloride (PAC) was used as the coagulant and a series of jar tests were conducted under various conditions. The flux was $90L/m^2-h$ and the fouling rate were calculated in each condition. As a result of this study, an empirical model was derived to explore the optimized conditions for coagulant dose and pH for minimization of the fouling rate. This model also allowed the prediction of the efficiency of the coagulation efficiency. The experimental results were in good agreement with the predictions, suggesting that RSM has potential as a practical method for modeling the coagulation pretreatment for MF.