• Title/Summary/Keyword: Environmental Operational Performance

Search Result 235, Processing Time 0.03 seconds

Pillared Bentonite Materials as Potential Solid Acid Catalyst for Diethyl Ether Synthesis: A Brief Review

  • Puji Wahyuningsih;Karna Wijaya;Aulia Sukma Hutama;Aldino Javier Saviola;Indra Purnama;Won-Chun Oh;Muhammad Aziz
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.223-234
    • /
    • 2024
  • This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.

Water demand forecasting at the DMA level considering sociodemographic and waterworks characteristics (사회인구통계 및 상수도시설 특성을 고려한 소블록 단위 물 수요예측 연구)

  • Saemmul Jin;Dooyong Choi;Kyoungpil Kim;Jayong Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.363-373
    • /
    • 2023
  • Numerous studies have established a correlation between sociodemographic characteristics and water usage, identifying population as a primary independent variable in mid- to long-term demand forecasting. Recent dramatic sociodemographic changes, including urban concentration-rural depopulation, low birth rates-aging population, and the rise in single-person households, are expected to impact water demand and supply patterns. This underscores the necessity for operational and managerial changes in existing water supply systems. While sociodemographic characteristics are regularly surveyed, the conducted surveys use aggregate units that do not align with the actual system. Consequently, many water demand forecasts have been conducted at the administrative district level without adequately considering the water supply system. This study presents an upward water demand forecasting model that accurately reflects real water facilities and consumers. The model comprises three key steps. Firstly, Statistics Korea's SGIS (Statistical Geological Information System) data was reorganized at the DMA level. Secondly, DMAs were classified using the SOM (Self-Organizing Map) algorithm to consider differences in water facilities and consumer characteristics. Lastly, water demand forecasting employed the PCR (Principal Component Regression) method to address multicollinearity and overfitting issues. The performance evaluation of this model was conducted for DMAs classified as rural areas due to the insufficient number of DMAs. The estimation results indicate that the correlation coefficients exceeded 0.9, and the MAPE remained within approximately 10% for the test dataset. This method is expected to be useful for reorganization plans, such as the expansion and contraction of existing facilities.

Pretreatment Condition in the Full Scale Dissolved Air Flotation Process Using a DAF Pump (DAF 펌프를 이용한 실규모 용존공기부상 공정의 전처리 조건)

  • Lee, Chang-Han;An, Dae-Myung;Kim, Seong-Soo;Cho, Seok-Ho;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Dissolved air flotation (DAF) process is generally considered more effective than sedimentation process in raw water containing algae, humus materials, and low density particles. This study presents the treatment efficiencies by the coagulation and flocculation conditions at a drinking water treatment plant using a laboratory tester and the full scale DAF pump system. The full scale DAF pump system (F-DAF) in this study had a capacity of 5,000 $m^3$/d and a hydraulic surface loading of 10 m/hr. F-DAF in D drinking water treatment plant was continuously operated to determine the operational performance and pretreatment (mixing and coagulation) conditions. Results in the laboratory experiment showed that the optimum coagulant (PSO-M) doses required to 2.7~4.5 mL/$m^3$/NTU with raw water turbidity from 13.8 NTU to 56.3 NTU. F-DAF in the optimum coagulant dosage could be operated in effluent turbidity of 1 NTU or below for a month.

Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models (DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지)

  • Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Youn, Youjeong;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.

Analysis of Redundant System with Rejuvenation for High Availability of Networking Service (네트워크 서비스의 가용도 향상를 위한 재활기법의 다중화 시스템 분석)

  • Ryu, Hong-Rim;Shim, Jaechan;Ryu, Hoyong;Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1717-1722
    • /
    • 2016
  • Availability, one of the important metrics used to assess the performance of network system, is defined as the probability that a system is operational at a given point in time under a given set of environmental conditions. To improve the availability of the network service, the redundancy models and the rejuvenation schemes are the effective schemes to be typically used. In this paper, we analyse the effect of 2N redundancy model and/or rejuvenation scheme on the availability of network service. The 2N redundancy model consists of one active and one standby component and the performance of time-based rejuvenation scheme mainly depends on its rejuvenation period. We design stochastic reward net model for the 2N redundancy model with time-based rejuvenation scheme and analyse the service availability of the model using stochastic Petri net package. We provide some numerical examples of the service availability, which shows that the system with rejuvenation has higher availability than the system without rejuvenation.

Specification Establishment and Verification for KSLV-I EMC Control (나로호의 EMC 통제를 위한 규격설정 및 검증)

  • Ji, Ki-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • Electromagnetic compatibility(EMC) performance of the first Korea space launch vehicle(KSLV-I) should be ensured and verified in order to guarantee the normal operation among the spacecraft, ground facilities which are installed in the space center, and other wireless communication networks. For the purpose of the EMC performance verification, pertinent EMC test specifications, methods, and procedures for both the subsystems and the system should be established in consideration of operational properties and electromagnetic environmental effects. And it is required to maintain and control the EMC properties consistently in accordance with the determined specifications up to the program closing phase. In this paper, sequential management work conducted during the overall development process of the KSLV-I is explained, and not only the phased EMC test plan for each model of the KSLV-I and its subsystem but also test method, specification, and results of the verification tests are presented. And also, multipaction analysis results are presented.

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.

Relative Contribution from Short-term to Long-term Flaring rate to Predicting Major Flares

  • Lim, Daye;Moon, Yong-Jae;Park, Eunsu;Park, Jongyeob;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.3-52.3
    • /
    • 2019
  • We investigate a relative contribution from short to long-term flaring rate to predicting M and X-class flare probabilities. In this study, we consider magnetic parameters summarizing distribution and non-potentiality by Solar Dynamics Observatory/Helioseimic and Magnetic Imager and flare list by Geostationary Operational Environmental Satellites. A short-term rate is the number of major flares that occurred in an given active region (AR) within one day before the prediction time. A mid-term rate is a mean flaring rate from the AR appearance day to one day before the prediction time. A long-term rate is a rate determined from a relationship between magnetic parameter values of ARs and their flaring rates from 2010 May to 2015 April. In our model, the predicted rate is given by the combination of weighted three rates satisfying that their sum of the weights is 1. We calculate Brier skill scores (BSSs) for investigating weights of three terms giving the best prediction performance using ARs from 2015 April to 2018 April. The BSS (0.22) of the model with only long-term is higher than that with only short-term or mid-term. When short or mid-term are considered additionally, the BSSs are improved. Our model has the best performance (BSS = 0.29) when all three terms are considered, and their relative contribution from short to long-term rate are 19%, 23%, and 58%, respectively. This model seems to be more effective when predicting active solar ARs having several major flares.

  • PDF

A Study of Development of Change Process for Configuration Management in Construction Project Management (건설사업관리에서 형상관리에 관한 변경 프로세스 개선에 관한 연구)

  • Ko, Ho-Un;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.81-89
    • /
    • 2009
  • CM(Configuration Management) is a field of management that focuses on establishing and maintaining consistency of a product's performance and its functional and physical attributes with its requirements, design, and operational information throughout its life. Recently upcoming concept of CM, regardless of various definitions, consists of the organization and the process for value creation through project change management, value preservation by Risk, Project Management implementation by Change management. The CM provide a basis for, and a record of, the project's performance in meeting the scope, time, cost. Overseas international companies have already adopted the CM system and enjoyed the benefits arising from such systems. And the CM provides perspectives and insights applicable to all types of projects. This study presents the review on the current systems now in use at jobsites and known to be efficient, and the introduction and application of configuration systems now at big issue. Hereby indicates the connective system consisted of work process, change control and knowledge referring to the methods and actual cases as an effective promotion of CM.

Evaluation of the Impact of Filter Media Depth on Filtration Performance and Clogging Formation of a Stormwater Sand Filter (강우유출수 모래 필터의 여과기능 및 폐색 현상에 대한 필터 여재 깊이의 영향 평가)

  • Segismundo, Ezequiel Q.;Lee, Byung-Sik;Kim, Lee-Hyung;Koo, Bon-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.36-45
    • /
    • 2016
  • Sand filters are widely used in infiltration systems to manage polluted urban runoff. Clogging, which is mainly caused by the deposition of sediments on the filter media, reduces the filter system's infiltration capacity, which further limits its lifespan and function. The physical, chemical and biological clogging characteristics of sand filter, therefore, need to be known for effective design and maintenance. Physical clogging behavior and variations in the characteristics of sand filters according to different media depths are examined in this paper. The variations were observed from laboratory column infiltration tests conducted in a vertical flow and fluctuating head condition. It can be seen that an increase in filter media depth results in a high sediment removal performance; however, it leads to a shorter lifespan due to clogging. In the choice of filter media depth to be used in field applications, therefore, the purpose of facilities as well as maintenance costs need to be considered. At all filter media depth configurations, premature clogging occurred because sediments of 100~250 μm clogged the top 15% of filter media depth. Thus, scrapping the top 15% of filter media may be suggested as the first operational maintenance process for the infiltration system.