• Title/Summary/Keyword: Environmental Graphics

Search Result 61, Processing Time 0.023 seconds

Latest Information Technologies in the UK Adults Education System

  • Tverezovska, Nina;Bilyk, Ruslana;Rozman, Iryna;Semerenko, Zhanna;Orlova, Nataliya;Vytrykhovska, Oksana;Oros, Ildiko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.25-34
    • /
    • 2022
  • Today, further education of adults in the UK is one of the developing areas of continuing education. The Open University with distance learning, in the process of which innovative forms and methods based on computer and telecommunication technologies are used, is particularly successful in the organization of additional education of the adult population. The advantages of distance learning, multimedia - the latest information technologies, which provide the combination of graphic images, video, sound with the help of modern computer tools, are noted. The basic principles and forms underlying the technologies and forms of work with the elderly are defined. The international experience of implementing "Universities of the Third Age" is summarized. The most widespread approach in adult education in Great Britain is informational. The use of computer technologies motivates a new paradigm in educational methods and strategies, which requires new approaches, forms of learning, and innovative ways of delivering educational materials to adult learners. Information technologies have gained great popularity in such activities as distance learning, online learning, assistance in the education management system, development of programs and virtual textbooks in various subjects, online search for information for the educational process, computer testing of students' knowledge, creation of electronic libraries, formation of a single scientific electronic environment, publication of virtual magazines and newspapers on pedagogical topics, teleconferences, expansion of international cooperation in the field of Internet education. The information technology of synchronous distance learning "online" has gained considerable popularity in the educational process today. A promising direction is the use of multimedia technologies in educational activities to create a design of a virtual computer environment by decoding audiovisual information.

Twin models for high-resolution visual inspections

  • Seyedomid Sajedi;Kareem A. Eltouny;Xiao Liang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

Real time Motion Graphics produce study of methods that use LED device (LED 장치를 응용한 실시간 모션그래픽스 구현방법에 관한 연구)

  • Lee, Min Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • LED design works make user experience the conditions of time and space, and enable maximized spatial exploration and pursuit of ultimate sources. Light itself includes an ample dimension of time and, through the process of on and off, time-duration, similarity, and discontinuation is reorganized. LED design works make people experience the conditions of time and space, and enable maximized spatial exploration and pursuit of ultimate sources. LED design have been approached more from the viewpoint of material than from the viewpoint of aesthetics. LED based environmental design will be embedded deeply into our life with the technology of ubiquitous city. As the problem of the light intensity, tempo of change LED motion graphic and colors, substitutability is almost completely resolved now, LED is have more potentials than any other material as a tool of motion graphic. These result well make that using of LED is could be better useful from now on. In edition, users could be offered better beneficial lighting environment, and they will enjoy their better lives in the future.

Video Augmentation by Image-based Rendering

  • Seo, Yong-Duek;Kim, Seung-Jin;Sang, Hong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.147-153
    • /
    • 1998
  • This paper provides a method for video augmentation using image interpolation. In computer graphics or augmented reality, 3D information of a model object is necessary to generate 2D views of the model, which are then inserted into or overlayed on environmental views or real video frames. However, we do not require any three dimensional model but images of the model object at some locations to render views according to the motion of video camera which is calculated by an SFM algorithm using point matches under weak-perspective (scaled-orthographic) projection model. Thus, a linear view interpolation algorithm is applied rather than a 3D ray-tracing method to get a view of the model at different viewpoints from model views. In order to get novel views in a way that agrees with the camera motion the camera coordinate system is embedded into model coordinate system at initialization time on the basis of 3D information recovered from video images and model views, respectively. During the sequence, motion parameters from video frames are used to compute interpolation parameters, and rendered model views are overlayed on corresponding video frames. Experimental results for real video frames and model views are given. Finally, discussion on the limitations of the method and subjects for future research are provided.

  • PDF

Localized Algorithm to Improve Connectivity and Topological Resilience of Multi-hop Wireless Networks

  • Kim, Tae-Hoon;Tipper, David;Krishnamurthy, Prashant
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.69-81
    • /
    • 2013
  • Maintaining connectivity is essential in multi-hop wireless networks since the network topology cannot be pre-determined due to mobility and environmental effects. To maintain the connectivity, a critical point in the network topology should be identified where the critical point is the link or node that partitions the network when it fails. In this paper, we propose a new critical point identification algorithm and also present numerical results that compare the critical points of the network and H-hop sub-network illustrating how effectively sub-network information can detect the network-wide critical points. Then, we propose two localized topological control resilient schemes that can be applied to both global and local H-hop sub-network critical points to improve the network connectivity and the network resilience. Numerical studies to evaluate the proposed schemes under node and link failure network conditions show that our proposed resilient schemes increase the probability of the network being connected in variety of link and node failure conditions.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

EcoBlog: 4d Spatial Framework for Ecological Virtual Community (EcoBlog: 생태학적 가상 커뮤니티 구현을 위한 4 차원 공간 프레임워크)

  • Lertlakkhanakul, Jumphon;Bae, Nu-Ri;Choi, Jin-Won;Chun, Chung-Yoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.937-944
    • /
    • 2006
  • Although people's anxiety about the environmental problem has been getting higher, they are not provided good quality of knowledge about the environment. Based on this situation, Ecoblog can be a new type of online community to educate the public in ecological knowledge. Especially, Ecoblog can be utilized as a method of "preventive education", and it will contribute to reduce great amounts of environmental budget to restore contaminated environment to previous condition. Ecoblog also utilizes the concept of blog which user can create and append their site with chosen themes. A weblog or a blog is a non-commercial webpage regularly updated through the use of a blogging software which allows the user to "publish" kinds of amalgamations of text and graphics to the page as posts. The technology offered in Ecoblog is utilizing the concept of 4D place and game metaphor in order to provide users the sense of participation, interaction and immersion among them and the growing community. Thus, it requires applying the CAAD technology by implementing semantically well-defined building data model as a core database to create a 4D virtual community. This research focuses on defining a 4d spatial framework suitable for developing an online ecological community. Through our study, the state-of-the-art of online community has been studied at the first step. Second, the scenario of using EcoBlog described with content, visualization and navigation are defined based on the critical features derived at the first step. Finally, a 4d spatial framework composed of semantic building data model, content and rule database is constructed to propose factors that are necessary to establish an ecological virtual community. In conclusion, our framework could enhance the comprehension and interaction between users and virtual buildings in the ecological community by integrating the concept of game design, 4D CAD and semantic data model. Such framework can be applied to any online community for an educational purpose.

  • PDF

Development of the sediment transport model using GPU arithmetic (GPU 연산을 활용한 유사이송 예측모형 개발)

  • Noh, Junsu;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.431-438
    • /
    • 2023
  • Many shorelines are facing the beach erosion. Considering the climate change and the increment of coastal population, the erosion problem could be accelerated. To address this issue, developing a sediment transport model for rapidly predicting terrain change is crucial. In this study, a sediment transport model based on GPU parallel arithmetic was introduced, and it was supposed to simulate the terrain change well with a higher computing speed compared to the CPU based model. We also aim to investigate the model performance and the GPU computational efficiency. We applied several dam break cases to verified model, and we found that the simulated results were close to the observed results. The computational efficiency of GPU was defined by comparing operation time of CPU based model, and it showed that the GPU based model were more efficient than the CPU based model.

3D GIS Network Modeling of Indoor Building Space Using CAD Plans (CAD 도면을 이용한 건축물 내부 공간의 3차원 GIS 네트워크 모델링)

  • Kang Jung A;Yom Jee-Hong;Lee Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • Three dimensional urban models are being increasingly applied for various purposes such as city planning, telecommunication cell planning, traffic analysis, environmental monitoring and disaster management. In recent years, technologies from CAD and GIS are being merged to find optimal solutions in three dimensional modeling of urban buildings. These solutions include modeling of the interior building space as well as its exterior shape visualization. Research and development effort in this area has been performed by scientists and engineers from Computer Graphics, CAD and GIS. Computer Graphics and CAD focussed on precise and efficient visualization, where as GIS emphasized on topology and spatial analysis. Complementary research effort is required for an effective model to serve both visualization and spatial analysis purposes. This study presents an efficient way of using the CAD plans included in the building register documents to reconstruct the internal space of buildings. Topological information was built in the geospatial database and merged with the geometric information of CAD plans. as well as other attributal data from the building register. The GIS network modeling method introduced in this study is expected to enable an effective 3 dimensional spatial analysis of building interior which is developing with increasing complexity and size.