• 제목/요약/키워드: Environmental Fatigue

검색결과 516건 처리시간 0.209초

Assessment of environmental fatigue in nuclear power plants: A comparative analysis of the effects of plasticity correction

  • Tae-Song Han;Hee-Jin Kim;Nam-Su Huh;Hyeong-Yeon Lee;Changheui Jang
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3764-3774
    • /
    • 2024
  • In accordance with Regulatory Guide 1.207, Rev.1, fatigue assessments must be conducted considering the influence of primary coolant environment in nuclear reactors. Environmental fatigue, resulting from corrosion in the primary coolant, is evaluated in air fatigue life assessments through the application of an environmental fatigue correction factor. This environmental fatigue correction factor depends on sulfur content, operating temperature, dissolved oxygen, and strain rate. It remains constant for sulfur content, operating temperature, and dissolved oxygen, while strain rate introduces potential errors based on the analysis method. The current fatigue evaluation procedure for air, following ASME B&PV Code Sec.III, NB-3200, employs elastic analysis with a simplified elastic-plastic correction factor(Ke). However, Ke factor is considered excessively conservative, prompting less conservative alternatives proposed by JSME, RCC-M, ASME Code Case N-779. This study applied both ASME Ke and JSME Ke for fatigue evaluations considering environmental effects. Additionally, fatigue assessments accounting for elastic-plastic effects were conducted using Neuber and Glinka methods, compared with actual experiments. The analysis systematically examined changes in fatigue life and the environmental fatigue correction factor due to plastic effects in environmental fatigue evaluations.

가압기 밀림관 환경피로평가를 위한 피로보정계수 적용에 관한 연구 (A Study on Application of Fatigue Correction Factor for Environmental Fatigue Evaluation of Pressurizer Surge Line)

  • 양준석;박치용;강선예
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1151-1157
    • /
    • 2009
  • Nuclear power plants applying for the continued operation over design life are required to address the effects of reactor water environment in fatigue design requirement of the ASME Code. Reactor water environmental effects are generally evaluated by calculating fatigue correction factors on fatigue usage. This paper describes the application for pressurizer surge line of environmental fatigue correction factors and the strain rate impact in the application. From this paper, the environmental fatigue correction factors resulted from the assumption of a step change in temperature are especially compared with those calculated from the data measured during plant startup. As a conclusion of this paper, the design transient conditions applied to the fatigue design may be conservative in case of the environmental fatigue evaluation.

The relationship between fatigue and sickness absence from work

  • Minsun Kim;Jiho Kim;SeongCheol Yang;Dong-Wook Lee;Shin-Goo Park;Jong-Han Leem;Hwan-Cheol Kim
    • Annals of Occupational and Environmental Medicine
    • /
    • 제35권
    • /
    • pp.32.1-32.10
    • /
    • 2023
  • Background: Although many studies have been conducted on worker fatigue and sickness absence, the association between fatigue and sickness absence is unclear in Korean workers. This study was conducted to investigate the effect of worker fatigue on future sickness absence. Methods: The study was conducted on workers who received medical check-ups at a university hospital for two consecutive years (2014-2015). During check-ups in the first year, the Fatigue Severity Scale (FSS) was used to assess fatigue levels, and during check-ups in the second year, sickness absence was surveyed to determine whether they had been absent from work due to physical or mental illness during previous 12 months. The χ2 test was used to analyze relationships between sociodemographic and occupational characteristics, fatigue levels, and sickness absence. Odds ratios (ORs) were calculated by logistic regression analysis controlled for confounding factors. Results: A total of 12,250 workers were included in the study, and 396 (3.2%) workers experienced more than one day of sickness absence during the study period. Adjusted ORs for sickness absence were 3.35 (95% confidence interval [CI]: 2.64-4.28) in the moderate-fatigue group and 6.87 (95% CI: 4.93-9.57) in the high-fatigue group versus the low-fatigue group. For men in the moderate- and high-fatigue groups, adjusted ORs for sickness absence were 3.40 (95% CI: 2.58-4.48) and 8.94 (95% CI: 6.12-13.07), and for women in the moderate- and high-fatigue groups, adjusted ORs for sickness absence were 2.93 (95% CI: 1.68-5.10) and 3.71 (95% CI: 1.84-7.49), respectively. Conclusions: Worker fatigue is associated with sickness absence during the following 12 months, and this association appears to be stronger for men than women. These results support the notion that sickness absence can be reduced by evaluating and managing work-related fatigue.

열성층을 포함하는 원자력발전소 배관의 환경피로평가 (Environmental Fatigue Evaluation for Thermal Stratification Piping of Nuclear Power Plants)

  • 김태순;김규형
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.164-169
    • /
    • 2018
  • A detailed fatigue evaluation procedure was developed to mitigate the excessive conservativeness of the conventional environmental fatigue evaluation method for the pressurizer spray line elbow of domestic new nuclear power plants. The pressurizer spray line is made of austenitic stainless steel, which is relatively sensitive to the environmentally assisted fatigue, and has a low degree of design margin in terms of environmentally assisted fatigue due to the thermal stratification phenomenon on the pipe cross section as a whole or locally. In this study, to meet the environmental fatigue design requirements of the pressurizer spray line elbow, the new environmental fatigue evaluation has been performed, which used the ASME Code NB-3200-based detailed fatigue analysis and the environmental fatigue correction factor instead of the existing NB-3600 evaluation method. As a result, the design requirements for environmentally assisted fatigue were met in all parts of the pressurizer spray line elbow including the fatigue weakened zones by thermal stratification.

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

원자력발전소 운전환경에서 SA508 Gr. 1A 저합금강의 피로 수명 분석 (Fatigue Life Analysis of SA508 Gr. 1A Low-Alloy Steel under the Operating Conditions of Nuclear Power Plant)

  • 이용성;김태순;이재곤
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.50-56
    • /
    • 2010
  • Fatigue has been known as a major degradation mechanism of ASME class 1 components in nuclear power plants. Fatigue damage could be accelerated by combined interaction of several loads and environmental factors. However, the environmental effect is not explicitly addressed in the ASME S-N curve which is based on air at room temperature. Therefore many studies have been performed to understand the environmental effects on fatigue behavior of materials used in nuclear power plants. As a part of efforts, we performed low cycle fatigue tests under various environmental conditions and analyzed the environmental effects on the fatigue life of SA508 Gr. 1a low alloy steel by comparing with higuchi's model. Test results show that the fatigue life depends on water temperature, dissolved oxygen and strain rate. But strain rate over 0.4%/s has little effect on the fatigue life. To find the cause of different fatigue life with ANL's and higuchi's model, another test performed with different heat numbered and heat treated materials of SA508 Gr. 1a. On a metallurgical point of view, the material with bainite microstructure shows much longer fatigue life than that with ferrite/pearlite microstructure. And the characteristics of crack propagation as different microstructure seem to be the main cause of different fatigue life.

  • PDF

A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure

  • Feng, Liuyang;Liu, Tianyao;Qian, Xudong;Chen, Cheng
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.465-481
    • /
    • 2022
  • This paper presents a comprehensive integrity assessment of welded structural components, including uniform high- and low-cycle fatigue assessment of welded plate joints and fatigue-induced fracture assessment of welded plate joints. This study reports a series of fatigue and fracture tests of welded plate joints under three-point bending. To unify the assessment protocol for high- and low-cycle fatigue of welded plate joints, this study develops a numerical damage assessment framework for both high- and low-cycle fatigue. The calibrated damage material parameters are validated through the smooth coupon specimens. The proposed damage-based fatigue assessment approach describes, with reasonable accuracy, the total fatigue life of welded plate joints under high- and low-cycle fatigue actions. Subsequently, the study performs a tearing assessment on the ductile crack extension of the fatigue-induced crack. The tearing assessment diagram derives from the load-deformation curve of a single-edge notched bend, SE(B) specimen and successfully predicts the load-crack extension relation for the reported welded plate joints during the stable tearing process.

CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성 (Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel)

  • 정일석;하각현;김태룡;전현익
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

The relevant factors of work-related fatigue for occupational vibrationexposed employees

  • YongDuk Ahn;Jeongbae Rhie;Min-Gi Kim
    • Annals of Occupational and Environmental Medicine
    • /
    • 제34권
    • /
    • pp.6.1-6.12
    • /
    • 2022
  • Background: To date, little is known about the effects of factors linked to work-related fatigue on vibration-exposed workers. Thus, the purpose of this study was (1) to assess the effects of vibration exposure time per week and work-related fatigue on workers and (2) to identify factors associated with work-related fatigue caused by long-term exposure to occupational vibration. Methods: This study used data collected from the 5th Korean Working Conditions Survey. A total of 34,820 non-vibration-exposed and 10,776 vibration-exposed employees were selected from the data. The χ2 and multiple logistic regression were used to determine the effect of vibration exposure time per week and the effects of factors of work-related fatigue on workers. Results: The prevalence of work-related fatigue in vibration-exposed workers (30.5%) was higher than that of non-exposed workers (15.9%). The prevalence of work-related fatigue was higher for female and workers with depression, anxiety, and shift work, and those with authority to control their work pace had statistically significantly higher odds than those who did not. The employees who had the authority to control their order of work (odds ratio [OR]: 0.88; 95% confidence interval [CI]: 0.81-0.95) and method of work (OR: 0.90; 95% CI: 0.82-0.98) had statistically significantly lower odds than those who did not. The OR of workrelated fatigue symptoms was highest among employees whose vibration exposure time per week were 30.0%-40.0% (OR: 2.36; 95% CI: 1.96-2.83). Lower OR was observed as vibration exposure time per week decreased. Conclusions: The results of the present study suggest an association between occupational vibration and work-related fatigue and longer vibration exposure time per week, causing an increased prevalence of work-related fatigue symptoms. Measures to protect workers exposed to occupational vibration from work-related fatigue must be taken.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.