• Title/Summary/Keyword: Environmental Drought Index

Search Result 185, Processing Time 0.027 seconds

Development of Drought Vulnerability Index Using Trend Analysis (경향성 분석을 통한 가뭄취약성 지수의 개발)

  • Yang, Jeong-Seok;Park, Jin-Hyuck;Kim, Nam-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.185-192
    • /
    • 2012
  • Drought vulnerability index was developed by selecting drought-related indicators with trend test. Study areas were determined by considering the weir locations from the four major rivers restoration project in Nakdong and Geum river watersheds. Ten indicators were selected and they were categorized into three groups, water resources, precipitation pattern, and social aspects. Annual average surface water level, annual minimum surface water level, annual average groundwater level, and annual minimum groundwater level data sets were collected for water resources aspects. The number of non-rainy days, rainfall concentration ratio, and rainfall deviation were considered for precipitation pattern category. The amount of water available per capita, financial soundness for water resources, and water usage equity were related to social aspects. Mann-Kendall, Hotelling-Pabst, and Sen trend tests were performed for the ten indicator data sets and the results were scored for the drought vulnerability index. The results shows Gumi, Sangjoo, and Hapcheon weirs are relatively vulnerable to drought. The indices were relatively low for the regions in Geum river watershed compared to those in Nakdong river watershed.

Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea (위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Tsegaye, Tadesse
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

Development of an evaluation index based on supply capacity for practical evaluation of drought resilience (현실적 가뭄대응력 평가를 위한 공급가능일수 기반의 평가지표 개발)

  • Kim, Gi Joo;Kim, Jiheun;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • This study suggests the drought resilience index as S-day as a means of preparing for the recent extreme drought, allowing for the actual operational identification of each drought countermeasure's priority as well as the vulnerability of water resource facilities to drought. Although each dam's drought measures are unique in this case, the representative examples include adjusting the water supply, linking the functioning of various facilities, and considering emergency capacity. Here, 15 multipurpose dams and water supply dams in Korea were inspected. Under the return period of 20-year drought, most of dams showed stable by adjusting the water supply overall. The measures, however, did not seem to be able to resist a multi-year drought lasting more than two years. Besides, Hoengseong and Anodong-Imha Dam only lasted a year under the 100-year drought return period with other measures. Without the deployment of drought mitigation strategies, it is expected that the Hoengseong Dam, Andong-Imha Dam, Gunwi Dam, Unmun Dam, Daecheong Dam, and Juam Dam would not be able to meet the all water demand for a year under the 20-year drought condition. The ideal capacity for each drought measure was then suggested. Additionally, by increasing or decreasing the current supply contract by 10% in order to account for demand changes resulting from socio-economic instability, the drought response capacity of all 15 dams was re-evaluated. By lowering the supply contract amount by 10%, it was possible to endure a severe drought.

MODIS DSI for Evaluation of the Local Drought Events in Korea (우리나라의 지역 가뭄 평가를 위한 MODIS DSI 활용)

  • Park, Hye Sun;Um, Myoung-Jin;Kim, Jeong Bin;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1209-1218
    • /
    • 2015
  • As the drought disasters are increased in the world, the need of study using satellite image data is on the rise. This study is conducted to analyze the drought in the region using satellite image, and to analyze the correlation with the standard precipitation index (SPI) and the actual drought cases. We selected Dongducheon and Taebaek region for domestic major drought (2001, 2008-2009). The correlation with the SPI and the observed water level data was analyzed using the $0.05^{\circ}$ spatial resolution and 8days MODIS DSI (Drought Severity Index). In Dongducheon, 6-months DSI has a correlation of 0.71 with the SPI (30). In Taebaek, the correlation between 6-months DSI and SPI (90) was a 0.40 and showed an average hit ratio of 65.7% in comparing with the observed water level of study area. In summary, this study showed a limited correlation between DSI based on satellite images and meteorological drought index SPI and confirmed the possibility of using DSI for the domestic study.

Development of Drought Vulnerability Index Using Delphi Method Considering Climate Change and Trend Analysis in Nakdong River Basin (낙동강 유역의 기후변화를 고려한 경향성 분석과 Delphi 기법을 이용한 가뭄 취약성 지수 개발)

  • Yang, Jeong-Seok;Kim, Il-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2245-2254
    • /
    • 2013
  • A vulnerability index was developed for drought by using trend analysis and Delphi method. Twelve indicators were selected based on three groups, i.e., hydrological, meteorological, and humanistic groups. Data were collected from Nakdong river watershed. Three trend tests, i.e., Mann-Kendall, Hotelling-Pabst, and Sen's trend tests, were performed for standardizing the indicators and Delphi method was used to estimate the weights for individual indicators. The drought vulnerability index was calculated for seven regions in the Nakdong watershed and Hapcheon turned out to be the most vulnerable region among the study regions. The drought vulnerability index developed in this study can be applied to other regions in Korea for establishing national water resources management plan.

Analysis of Drought Detection and Propagation Using Satellite Data (인공위성 영상 정보를 이용한 가뭄상황 및 징후분석)

  • Shin, Sha-Chul;Eoh, Min-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.61-69
    • /
    • 2004
  • Drought is one of the mai or environmental disasters. Weather data, particularity rainfall, are currently the primary source of information widely used for drought monitoring. However, weather data are often from a very sparse meteorological network. Therefore, data obtained from the Advanced Very High Resolution Radiometer(AVHRR) sensor boarded on the NOAA polar-orbiting satellites have been studied as a tool for drought monitoring. The normalized difference vegetation index(NDVI) and vegetation condition index(VCI) were used in this study. Also, a simple method to detect drought Is Proposed based on climatic water balance using NOAA/AVHRR data. The results clearly show that temporal and spatial characteristics of drought in Korea can be detected and mapped by the moisture index.

Application of SAD Curves in Assessing Climate-change Impacts on Spatio-temporal Characteristics of Extreme Drought Events (극한가뭄의 시공간적 특성에 대한 기후변화의 영향을 평가하기 위한 SAD 곡선의 적용)

  • Kim, Hosung;Park, Jinhyeog;Yoon, Jaeyoung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.561-569
    • /
    • 2010
  • In this study, the impact of climate change on extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate. The depth-area-duration analysis for characterizing an extreme precipitation event provides a basis for analysing drought events when storm depth is replaced by an appropriate measure of drought severity. In our climate-change impact experiments, the future monthly precipitation time series is based on a KMA regional climate model which has a $27km{\times}27km$ spatial resolution, and the drought severity is computed using the standardized precipitation index. As a result, agricultural drought risk is likely to increase especially in short duration, while hydrologic drought risk will greatly increase in all durations. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Characterizing three-dimensional drought events and spatio-temporal migration patterns (3차원적 가뭄사상 특성 분석 및 시공간적 이동 패턴 분석)

  • Yoo, Jiyoung;Kim, Jang-Gyeong;Yoo, Do-Guen;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1025-1031
    • /
    • 2019
  • There are various research works on the spatio-temporal drought analysis because spatio-temporal behaviors of drought are essential for understanding the development and migration patterns of drought events. This study quantified three-dimensional drought events using the 6-month Standard Precipitation Index (SPI6). A total of 45 drought events were found during the analysis period, and the migration patterns of drought event in South Korea were analyzed using the centers of drought events. In South Korea, more droughts were migrated frequently in the north/south direction than in the east/west direction. In addition, droughts moving eastward have decreased since 2000, while droughts moving northward have been found to be longer. The results of spatio-temporal drought analysis may be highly utilized for understanding drought development and migration patterns.

Standar Dization and Evaluation of PDSI Calculation Method for Korean Drought Management Agencies (국내 가뭄관리 기관별 PDSI 산정방법의 표준화 및 평가)

  • Bae, Deg-Hyo;Sohn, Kyung-Hwan;Kim, Hyun-Kyung;Lee, Joo-Heon;Lee, Dong-Ryul;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.539-547
    • /
    • 2013
  • The objective of this study is to standardize the calculation method of Palmer Drought Severity Index (PDSI) for the three Drought Management Agencies (DMA) in south Korea, and to evaluate the PDSI applicability. For comparison and review of the method, the code and input data of PDSI are collected from each DMA. The calculation method is the same, but the used input data (number of meteorological stations, normal year period, Available Water Capacity (AWC) of the soil) are different. Through discussions with drought experts and literature review, the standardized method is determined. 61 stations which have the data period more than 30 years are selected. Also the normal year is fixed for 30 years and updated every 10 years. The observed AWC is utilized using GIS data. Empirical equation of PDSI is re-estimated according to domestic climate characteristics. For evaluating the standardized PDSI, past drought events are investigated and drought indices including the existing SPI and PDSI are used for comparative analysis. As results, although the accuracy of standardized PDSI through ROC analysis is lower than SPI, the newly standardized PDSI is better than existing PDSI from DMA, Also it reasonably explain the spatial drought situation through the spatial analysis.

Forecasting Monthly Agricultural Reservoir Storage and Estimation of Reservoir Drought Index (RDI) Using Meteorological Data Based Multiple Linear Regression Analysis (기상자료기반 다중선형회귀분석에 의한 농업용 저수지 월단위 저수율 예측 및 저수지 가뭄지수(RDI) 추정)

  • LEE, Ji-Wan;KIM, Jin-Uk;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.19-34
    • /
    • 2018
  • The purpose of this study is to estimate monthly agricultural reservoir storage with multiple linear regression model(MLRM) based on reservoir storage and meteorological data. The regression model was developed using 15 years(2002 to 2016) of 3,067 reservoirs by KRC(Korea Rural Community) and 63 meteorological stations by KMA (Korean Meteorological Administration), and the MLRM showed the determination coefficient($R^2$) of 0.51~0.95. The MLRM was applied to 9 selected reservoirs among the whole reservoirs and validated with $R^2$ of 0.44~0.81. The ROC(Receiver Operating Characteristics) analysis of Reservoir Drought Index(RDI) classified by comparing the present reservoir storage with normal year(1976~2005 average) reservoir storage showed average value of 0.64 for 2 years(2015~2016) with the highest value of 0.70 for winter period, lowest value of 0.58 for summer period. If 1 to 3 months weather forecasting data such as Glosea5 produced by KMA are applied, the predicted monthly reservoir storage from the MLRM can be a useful information for agricultural drought pre-preparation.