• 제목/요약/키워드: Environmental Degradation

검색결과 2,025건 처리시간 0.036초

Discussion on the Technology Route for Land Degradation Monitoring and Assessment based on 3S Technique

  • Jing, Wang;Ting, He;Zhang, Ji-Xian;Li, Hai-Tao
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.757-765
    • /
    • 2002
  • This paper analyzes three theories for land degradation assessment and internationl/domestic methods for land degradation monitoring and assessment. Under the guidance of absolute degradation thought, this paper proposes the technological framework for monitoring and appraising cultivated land degradation based on the 3S technique. We can apply 3S technique and analyze the nature, the environmental, the social, and the economic elements which influence the land utilization and degradation synthetically, to set up the indicator system of the cultivated land degradation monitoring and assessment based on 3S technique; to propose the degradation information extraction methods based on 3S technique; to create the quantitative assessment model and method for land degradation; to analyze the ecological environment response of land use and degradation quantitatively; and to propose the measure, policy and suggestion for solving the land degradation problem from the point of view of land utilization.

  • PDF

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

고체 고분자 전해질(SPE)을 이용한 전기분해 공정에서 Rhodamine B 분해 (Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process)

  • 박영식
    • 한국환경보건학회지
    • /
    • 제40권2호
    • /
    • pp.137-146
    • /
    • 2014
  • Objectives: Feasibility of electrochemical oxidation of the aqueous non-biodegradable wastewater such as cationic dye Rhodamine B (RhB) has been investigated in an electrochemical reactor with solid polymer electrolyte (SPE). Methods: Nafion 117 cationic exchange membrane as SPE has been used. Anode/Nafion/cathode sandwiches were constructed by sandwiching Nafion between two dimensionally stable anodes (JP202 electrode). Experiments were conducted to examine the effects of applied current (0.5~2.0 A), supporting electrolyte type (0.2 N NaCl, $Na_2SO_4$, and 1.0 g/L NaCl), initial RhB concentration (2.5~30.0 mg/L) on RhB and COD degradation and $UV_{254}$ absorbance. Results: Experimental results showed that an increase of applied current in electrolysis reaction with solid polymer electrolyte has resulted in the increase of RhB and $UV_{254}$ degradation. Performance for RhB degradation by electrolyte type was best with NaCl 0.2 N followed by SPE, and $Na_2SO_4$. However, the decrease of $UV_{254}$ absorbance of RhB was different from RhB degradation: SPE > NaCl 0.2 N > $Na_2SO_4$. RhB and $UV_{254}$ absorbance decreased linearly with time regardless of the initial concentration. The initial RhB and COD degradation in electrolysis reaction using SPE showed a pseudo-first order kinetics and rate constants were 0.0617 ($R^2=0.9843$) and 0.0216 ($R^2=0.9776$), respectively. Conclusions: Degradation of RhB in the electrochemical reactor with SPE can be achieved applying electrochemical oxidation. Supporting electrolyte has no positive effect on the final $UV_{254}$ absorbance and COD degradation. Mineralization of COD may take a relatively longer time than that of the RhB degradation.

Rethink the interlink between land degradation and livelihood of rural communities in Chilga district, Northwest Ethiopia

  • Gashu, Kassahun;Muchie, Yitbarek
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.139-149
    • /
    • 2018
  • Background: Ethiopia is among the poorest countries where land degradation caused livelihood problem to its inhabitants. The livelihood of rural communities in Ethiopia is seriously threatened by land degradation. Land is the major natural resource that economic, social, infrastructure, and other human activities are undertaken on. Thus, land resources play an important role in shaping rural livelihoods, and lack of sustainable land management practices leads to land degradation. Thus, this study aimed to analyze interlink between land degradation and livelihood of rural communities in Chilga district, Northwest Ethiopia. It also addresses the factors which influence income diversification for livelihood of households in the study area. Result: The result depicts that the major causes of land degradation are both natural and anthropogenic. Land degradation and livelihood are negatively interlinked with each other. The livelihood of the majority of the population in the study area is dependent on subsistence agriculture both farming and animal husbandry with low diversification. The survey result showed that more than half (69%) of the sample households have farm size of less than 2 ha, nearly one third (31%) have 2.0-2.5 ha, and insignificant number of farmers have more than 2.5 ha. More than 80% of the respondents pointed out that land degradation has impacts both on crop yield and livestock production. Most of the explanatory variables such as gender, age, education level, farmland size, and family size have statistical significant influence (at P < .01 and P < .05 levels) for income diversification of households, while marital status on the other hand is not statistically significant though it has positive relation with income diversification in this study. Conclusions: Our results suggest awareness should be created in the community about the livelihood diversification mechanisms which enabled them to engage in different income-generating activities and comprehensive watershed management should be implemented.

칼륨 페레이트에 의한 Eriochrome Black T 분해 연구 (Degradation of eriochrome black T by potassium ferrate (VI))

  • 황민원;김일규
    • 상하수도학회지
    • /
    • 제36권3호
    • /
    • pp.167-175
    • /
    • 2022
  • 수용액에서 EBT의 분해는 pH, Ferrate (VI) 투입량, 초기 농도, 수용액 온도 등 다양한 변수의 조건에서 연구되었다. 최대 분해 효율은 pH 7.0에서 95.42%가 달성되었으며, 이 실험 조건에서 얻은 kapp 값은 872.87 M-1s-1 이었다. EBT 분해율은 Ferrate (VI)의 투입량이 증가함에 따라 증가하였으며 EBT 초기 농도가 감소함에 따라 EBT 분해의 초기 속도 상수가 증가하였다. 또한 EBT의 분해율은 온도가 10℃에서 45℃에 도달할 때까지 수용액의 온도에 따라 증가하였으며 이 실험조건에서 활성화 에너지 값은 EBT 분해에 대해 11.9 kJ/mol의 값이 도출되었다. 따라서 분해 실험의 결과는 Ferrate (VI)가 수용액상에서 EBT를 효과적으로 분해시킬 수 있음을 보여주고 있다.

Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: Sonochemical, sono-nano-chemical and sono-nano-chemical/persulfate processes

  • Igwegbe, Chinenye Adaobi;Ahmadi, Shahin;Rahdar, Somayeh;Ramazani, Alireza;Mollazehi, Abdol Raufeh
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.178-185
    • /
    • 2020
  • The aim of this study is to investigate the degradation of ciprofloxacin (CIP) from its aqueous solutions via different advanced oxidation processes (AOP). The effects of persulfate (PS) concentration, pH, zinc oxide nanoparticles (ZnO-NPs) dose, initial CIP concentration, and reaction time on the degradation of CIP were studied. It was found that the sonochemical (US) degradation is a less efficient process (with removal efficiency of 36%) compared to the sono-nano-chemical (US/ZnO) process which resulted in removal efficiency of 70%. Maximum removal of 99% was obtained using the sono-nano-chemical/PS (US/ZnO/PS) process at a frequency of 60 kHz, time of 10 min, pH of 7, initial CIP concentration of 25 mg/L, and PS concentration of 476.06 mg/L. The addition of PS and ZnO-NPs to the process enhanced the rate of US degradation of CIP. In addition, the kinetic parameters for the US/ZnO/PS process were obtained by fitting the kinetic data into the pseudo-first-order and pseudo-second-order kinetic models. The kinetic data was found to fit into the pseudo-first-order kinetic model than the pseudo-second-order model. The results showed that the AOP using US/ZnO/PS is a promising technique for the treatment of ciprofloxacin containing solutions.

Syntrophic Propionate Degradation Response to Temperature Decrease and Microbial Community Shift in an UASB Reactor

  • Ban, Qiaoying;Li, Jianzheng;Zhang, Liguo;Jha, Ajay Kumar;Zhang, Yupeng;Ai, Binling
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.382-389
    • /
    • 2013
  • Propionate is an important intermediate product during the methane fermentation of organic matter, and its degradation is crucial for maintaining the performance of an anaerobic digester. In order to understand the effect of temperature on propionate degradation, an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater containing propionate as a sole carbon source was introduced. Under the hydraulic retention time (HRT) of 10 h and influent propionate of 2,000 mg/l condition, propionate removal was above 94% at 30-$35^{\circ}C$, whereas propionate conversion was inhibited when temperature was suddenly decreased stepwise from $30^{\circ}C$ to $25^{\circ}C$, to $20^{\circ}C$, and then to $18^{\circ}C$. After a long-term operation, the propionate removal at $25^{\circ}C$ resumed to the value at 30- $35^{\circ}C$, whereas that at $20^{\circ}C$ and $18^{\circ}C$ was still lower than the value at $35^{\circ}C$ by 8.1% and 20.7%, respectively. Microbial community composition analysis showed that Syntrophobacter and Pelotomaculum were the major propionate-oxidizing bacteria (POB), and most POB had not changed with temperature decrease in the UASB. However, two POB were enriched at $18^{\circ}C$, indicating they were low temperature tolerant. Methanosaeta and Methanospirillum were the dominant methanogens in this UASB and remained constant during temperature decrease. Although the POB and methanogenic composition hardly changed with temperature decrease, the specific $COD_{Pro}$ removal rate of anaerobic sludge (SCRR) was reduced by 21.4%-46.4% compared with the control ($35^{\circ}C$) in this system.

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권5호
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구 (A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제20권5호
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

실험실 규모 Cometabolic Air Sparging 공정 적용 특성 평가 : 토양 내 활성미생물 별 MTBE 분해특성 (Evaluation of the Laboratory-Scale Cometabolic Air Sparging Process : Characterization of Indigeneous Microorganism on MTBE Degradation)

  • 안상우;이시진;장순웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2010
  • Cometabolic air sparging (CAS) is a new and innovative technology that uses air sparging principles but attempts to optimize in situ contaminant degradation by adding a growth substrate to saturated zone. CAS relies on the degradation of the primary growth substrate and cometabolic substrate transformation in the saturated zone and in the vadose zone for volatilized contaminants. In this study, we have investigated to determine MTBE degradation pattern and microbial activity variation if using propane as a primary substrate at the condition of considering air injection rate and air injection pattern. Laboratory-scale two-dimentional aquifer physical model studies were used and the experimental results were represented that the optimal conditions were as air injection rate of 1,000 mL/min and pulsed air injection pattern (15 min on/off). Over 1,000 mL/min air injection rate and continuous air injection pattern was no affected to increase DO concentration. On the other hand, Injection of propane and propane-utilizing bacteria degraded MTBE partially. And also, injection of propane- and MTBE-utilizing bacteria effectively degraded MTBE and TBA production was observed.