• Title/Summary/Keyword: Environmental DNA

Search Result 1,793, Processing Time 0.031 seconds

Breeding and characteristics of Uram, a New Variety of Pleurotus nebrodensis (백령느타리 신품종 '우람'의 육성 및 특성)

  • Ha, Tai-Moon;Jung, Gu-Hyun;Kim, Jeoung-Suk;Choi, Jong-In;Kim, Jeong-Han;Lee, Yong-Seon;Jeong, Yung-Kyeoung
    • Journal of Mushroom
    • /
    • v.19 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study was carried out to breed new variety of Pleurotus nebrodensis. We have collected and tested characteristics of genetic resources from domestic and abroad since 2015. The varieties of P. nebrodensis from China are grown by farmers, but those have been unstable fruiting and are weak against bacterial diseases. To solve this problem, we bred the unique domestic variety 'Uram' of P. nebrodensis and the results of the characteristic test for the new 'Uram' are as follows. The proper temperature for the mycelial growth was 26~29℃ and fruit body growth temperature was 15~18℃. It was similar to the control variety KME65035 of P. nebrodensis in the pileus form of a flat and white color. The number of days required for initial fruting was 5 days for bottle cultivation and 6 days for bag cultivation which was 2-4 days shorter than that of the control variety. The pileus diameter was 32.6-37.0 mm which was smaller but the fruit body length was 130.4 mm, which was longer than those of the control variety. The effective number of fruit bodies was 1.8 in bottle cultivation and 2.9 in bag cultivation, which was more than those of the control variety. The yield rate was 93.3-100%, which was more stable than those of the control variety. In bottle cultivation and bag cultivation, the yield was 173.1 g/bottle (1100 cc) and 283.4 g/bag (1.2 kg), respectively, which was 25-44% higher than those of the control variety 138.0 g/bottle (1100 cc) and 197.4 g bag (1.2 kg). When incubating the parent and control varieties of 'Uram', the replacement line was clear and as a result of mycelial DNA RAPD-PCR reaction, the band pattern was different from that of the parent and control varieties, confirming the hybrid species.

A Novel Synthesized Tyrosinase Inhibitor, (E)-3-(4-hydroxybenzylidene) chroman-4-one (MHY1294) Inhibits α-MSH-induced Melanogenesis in B16F10 Melanoma Cells (신규 합성물질 (E)-3-(4-하이드록시벤질리딘)크로마논 유도체의 티로시나아제 효소활성 저해 및 멜라닌 생성 억제 효과)

  • Jeon, Hyeyoung;Lee, Seulah;Yang, Seonguk;Bang, EunJin;Ryu, Il Young;Park, Yujin;Jung, Hee Jin;Chung, Hae Young;Moon, Hyung Ryong;Lee, Jaewon
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.719-728
    • /
    • 2021
  • Melanin pigments are abundantly distributed in mammalian skin, hair, eyes, and nervous system. Under normal physiological conditions, melanin protects the skin against various environmental stresses and acts as a physiological redox buffer to maintain homeostasis. However, abnormal melanin accumulation results in various hyperpigmentation conditions, such as chloasma, freckles, senile lentigo, and inflammatory pigmentation. Tyrosinase, a copper-containing enzyme, plays an important role in the regulation of the melanin pigment biosynthetic pathway. Although several whitening agents based on tyrosinase inhibition have been developed, their side effects, such as allergies, DNA damage, mutagenesis, and cytotoxicity of melanocytes, limit their applications. In this study, we synthesized 4-chromanone derivatives (MHY compounds) and investigated their ability to inhibit tyrosinase activity. Of these compounds, (E)-3-(4-hydroxybenzylidene)chroman-4-one (MHY1294) more potently inhibited the enzymatic activity of tyrosinase (IC50 = 5.1±0.86 μM) than kojic acid (14.3±1.43 μM), a representative tyrosinase inhibitor. In addition, MHY1294 showed competitive inhibitory action at the catalytic site of tyrosinase and had greater binding affinity at this site than kojic acid. Furthermore, MHY1294 effectively inhibited α-melanocyte stimulating hormone (α-MSH)-induced melanin synthesis and intracellular tyrosinase activity in B16F10 melanoma cells. The results of the present study indicate that MHY1294 may be considered as a candidate pharmacological agent and cosmetic whitening ingredient.

Application of Plant Flavonoids as Natural Antioxidants in Poultry Production (가금 생산에서 천연 항산화제로서 식물성 Flavonoids의적용)

  • Kang-Min, Seomoon;In-Surk, Jang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.211-220
    • /
    • 2022
  • Poultry are exposed to extremely high levels of oxidative stress as a consequence of the excessive production of reactive oxygen species (ROS) induced by endogenous and exogenous stressors, such as high-stocking densities, thermal stress, environmental and feed contamination, along with factors associated with intensive breeding systems. Oxidative stress promotes lipid peroxidation, DNA damage, and inflammation, which can have detrimental effects on the health of birds. During the course of evolution, birds have developed antioxidant defense mechanisms that contribute to maintaining homeostasis when exposed to endogenous and exogenous stressors. The primary antioxidant defense systems are enzymatic and non-enzymatic in nature and play roles in protecting cells from ROS attack. Recently, plant flavonoids, which have been established to reduce oxidative stress, have been attracting considerable attention as potential feed additives. Flavonoids are a group of polyphenolic compounds that can be stabilized by binding structural compounds with ROS, and can promote the elimination of ROS by inducing the expression of antioxidant enzymes. However, although flavonoids can contribute to reducing lipid peroxidation and thereby enhance the antioxidant capacity of birds, they have low solubility in the gastrointestinal tract, and consequently, it is necessary to develop a delivery technology that can facilitate the effect intestinal absorption of these compounds. Furthermore, it is important to determine the dietary levels of flavonoids by assessing the exact antioxidant effects in the gastrointestinal tract wherein the concentrations of dietary flavonoids are highest. It is also necessary to examine the expression of transcriptional factors and vitagenes associated with the efficient antioxidant effects induced by flavonoids. It is anticipated that the application of flavonoids as natural antioxidants will become a particularly important field in the poultry industry.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Morphology, Phylogeny and Ecology of Hyphomycetes Hyperparasitic to Rusts

  • Park, Mi-Jeong;Park, Jong-Han;Hong, Seung-Beom;Shin, Hyeon-Dong
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.55-55
    • /
    • 2015
  • Rust is one of the most destructive diseases on economically important plants such as agricultural and horticultural crops, as well as forest trees [1]. Chemical treatment is the most effective means to control rust, but use of the chemical fungicides involves inevitable risks to human health and environment [2]. Unfortunately, biocontrol is currently impracticable for rust disease management [3]. It is necessary to exploit biocontrol agents to help prevent rust diseases. As a fundamental research for future development of biocontrol agents for rusts, biodiversity of hyperparasites occurring on rust fungi was investigated. During 2006-2010, 197 fungal isolates of the rust hyperparasites were collected and isolated from various combinations of mycohosts and plant hosts in many regions of Korea. Based on morphological and molecular data, they were identified as 8 genera and 12 species. Besides, phylogenetic relationships between the hyperparasites and related taxa were inferred. A total of 114 isolates of Pseudovirgaria were obtained from rust pustules of Phragmidium spp. and Pucciniastrum agrimoniae infecting rosaceous plants. Phylogenetic analysis using multigene sequences revealed a high level of genetic variability among many isolates of Pseudovirgaria and close correlation between the isolates and mycohosts. Only two species of Pseudovirgaria, P. hyperparasitica and P. grisea are often difficult to distinguish by their morphological similarity, but on the molecular basis they were clearly differentiated from each other. There had been no previous record of P. grisea outside Europe, but the present study has proved its presence in Korea. Among six distinct groups (five of P. hyperparasitica and one of P. grisea) within the Pseudovirgaria isolates, each lineage of P. hyperparasitica was closely associated with specific mycohosts and thus might have cospeciated with their mycohosts, which probably led to coevolution. Although P. grisea possesses a host preference for Phragmidium species occurring on Rubus, it was not specific for a mycohost. P. grisea seems to evolve in the direction of having a broad mycohost range. Seventeen isolates of Verticillium-like fungi were isolated from rust sori. Based on morphological data and DNA sequence analysis, the isolates were identified as three Lecanicillium species, viz. L. attenuatum, Lecanicillium sp. 1, Lecanicillium sp. 2, and V. epiphytum. The unidenified two species of Lecanicillium appear to be previously unknown taxa. Sixty-six isolates of miscellaneous hyphomycetes belonging to 6 species of 5 genera were obtained from pustules of rust fungi. On the basis of morphological and molecular analyses, the miscellaneous hyphomycetes growing on rusts were identified as Acrodontium crateriforme, Cladophialophora pucciniophila, Cladosporium cladosporioides, Phacellium vossianum, Ramularia coleosporii, and R. uredinicola.

  • PDF

GENETIC SUSCEPTIBILITIES OF CYTOCHROME P450 1A1, 2E1, AND N-ACETYLTRANSFERASE 2 TO THE RISKS FOR KOREAN HEAD AND NECK CANCER PATIENTS (한국인 두경부암종 환자에서 Cytochrome P450 1A1, 2E1 및 N-acetyltransferase 2 효소의 다형성 분석에 따른 유전적 감수성에 대한 연구)

  • Lee, Young-Soo;Kim, Te-Gyun;Woo, Soon-Seop;Shim, Kwang-Sub;Kong, Gu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.4
    • /
    • pp.373-382
    • /
    • 2000
  • Individual genetic susceptibilities to cancers may result from several factors including differences in xenobiotics metabolism to chemical carcinogens, DNA repair, altered oncogenes and suppressor genes, and environmental carcinogen exposures. Among them, genetic polymorphisms of metabolizing enzymes to chemical carcinogens have been recognized as a major important host factors in human cancers. They have two main types of enzymes: the phase I cytochrome P-450 mediating enzymes (CYPs) and phase II conjugating enzymes. The purpose of this study is to determine the frequencies of genotypes of phase I (CYP1A1 and CYP2E1) and phase II (NAT2) metabolizing enzymes in healthy control and head and neck cancer patients of Korean and to identify the relative high risk genotypes of these metabolizing enzymes to head and neck cancer in Korean. The author has analyzed 132 head and neck cancer patients and 113 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results were as following; 1. The frequencies of genotypes of CYP1A1, CYP2E1 and NAT2 in healthy control were as following; CYP1A1 exon 7 polymorphism; Ile/Ile: Ile/Val: Val/Val = 59.3%: 36.3%: 4.4% CYP2E1 Pst I polymorphism, C1/C1: C1/C2: C2/C2 = 61.1%: 32.1%: 6.2% NAT2 polymorphism; F/F: F/S: S/S = 43.4%: 48.7%: 8.0% 2. In analysis of phase I enzyme, Val/Val genotype in CYP1A1 exon 7 polymorphism and C2/C2 genotype in CYP2E1 Pst I polymorphism were associated with relative high risks to head and neck cancers (Odds' ratio: 2.09 and 1.37, respectively). 3. Among the genotypes of NAT2 enzyme polymorphism, S/S genotype of NAT2 enzyme had 1.03 times of relative risk to head and neck cancers. 4. In combined genotyping of CYP1A1, CYP2E1, and NAT2 enzymes polymorphisms, the patients with Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator had higher relative risks than the patients with each baseline of combined genotypes (Odds' ratio: 2.82, 1.98 and 2.1, respectively). These results suggest the combined genotypes of Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator were more susceptible to head and neck cancers in Korean. And genotyping of metabolizing enzymes could be useful for predicting individual susceptibility to head and neck cancer.

  • PDF

Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

  • Lee, Yong Sun;Yi, Jung-Sun;Lim, Hye Rim;Kim, Tae Sung;Ahn, Il Young;Ko, Kyungyuk;Kim, JooHwan;Park, Hye-Kyung;Sohn, Soo Jung;Lee, Jong Kwon
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to $200{\mu}M$. The exposure was with $2.0{\sim}2.2mW/cm^2$ irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances.

Effect on the Concentration of Glucose and Sucrose on the Hydrogen Production using by the Facultative Anaerobic Hydrogen Producing Bacterium Rhodopseudomonas sp. MeL 6-2 (통성혐기성 수소생산균주 Rhodopseudomonas sp. MeL 6-2를 이용한 수소생산효율에 미치는 포도당 및 자당 농도의 영향)

  • Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.176-182
    • /
    • 2009
  • Hydrogen producing bacterium, strain MeL 6-2 was isolated from the sludge of the factory areas in Anyang through the acclimation in basal salt medium (BSM) supplemented with 10 g/L of sucrose. Isolated strain MeL 6-2 was a facultative anaerobe which could grow in both aerobic and anaerobic environments. An aerobically grown pure culture isolated from enriched culture was analyzed by 16S rDNA sequencing and identified as Rhodopseudomonas sp. MeL 6-2. Effects of the concentrations of glucose and sucrose on the hydrogen production rate and the hydrogen production yield were investigated. When glucose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow without lag phase. An increased glucose concentration increased the specific hydrogen production rate linearly to $4.2\;mmol-H_2{\cdot}L^{-1}{\cdot}h^{-1}$ at 10 g/L, and $60\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$, but decreased slightly as the concentration increased to 12 g/L. The hydrogen production yield was maintained over a range from 2.6 to $3.1\;mol-H_2{\cdot}mol-glucose^{-1}$. When sucrose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow after ten hours. An increased sucrose concentration increased the specific hydrogen production rate and the hydrogen production yield to $163\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$ and to $4.5\;mol-H_2{\cdot}mol-sucrose^{-1}$, respectively.

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377 (고온내성 연료용 알코올 효모균주 Saccharomyces cerevisiae KNU5377에서 HSF1 유전자의 변이주 구축)

  • Kim Il-Sup;Yun Hae-Sun;Choi Hye-Jin;Sohn Ho-Yong;Yu Choon-Bal;Kim Jong-Guk;Jin Ing-Nyol
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.454-458
    • /
    • 2006
  • HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.

Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis (Diethylnitrosamine 처리 후 병리학적 결과를 기초로 한 마우스 간에서의 유전자 발현 분석)

  • Kim, Ji-Young;Yoon, Seok-Joo;Park, Han-Jin;Kim, Yong-Bum;Cho, Jae-Woo;Koh, Woo-Suk;Lee, Michael
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • Diethylnitrosamine (DEN) is a nitrosamine compound that can induce a variety of liver lesions including hepatic carcinoma, forming DNA-carcinogen adducts. In the present study, microarray analyses were performed with Affymetrix Murine Genome 430A Array in order to identify the gene-expression profiles for DEN and to provide valuable information for the evaluation of potential hepatotoxicity. C57BL/6NCrj mice were orally administered once with DEN at doses of 0, 3, 7 and 20 mg/kg. Liver from each animal was removed 2, 4, 8 and 24 hrs after the administration. The histopathological analysis and serum biochemical analysis showed no significant difference in DEN-treated groups compared to control group. Conversely, the principal component analysis (PCA) profiles demonstrated that a specific normal gene expression profile in control groups differed clearly from the expression profiles of DEN-treated groups. Within groups, a little variance was found between individuals. Student's t-test on the results obtained from triplicate hybridizations was performed to identify those genes with statistically significant changes in the expression. Statistical analysis revealed that 11 genes were significantly downregulated and 28 genes were upregulated in all three animals after 2 h treatment at 20 mg/kg. The upregulated group included genes encoding Gdf15, JunD1, and Mdm2, while the genes including Sox6, Shmt2, and SIc6a6 were largely down regulated. Hierarchical clustering of gene expression also allowed the identification of functionally related clusters that encode proteins related to metabolism, and MAPK signaling pathway. Taken together, this study suggests that match with a toxicant signature can assign a putative mechanism of action to the test compound if is established a database containing response patterns to various toxic compounds.