• Title/Summary/Keyword: Environment-friendly agricultural complex

Search Result 20, Processing Time 0.022 seconds

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Weed Occurrence and Rice Yield as Affected by Environment Friendly Farming Methods (친환경 농법에 따른 논 잡초발생 차이와 벼 수량에 끼치는 영향)

  • Cho, Kwang-Min;Lee, Sang-Bok;Kim, Sun;An, Xue-Hua;Chun, Jae-Chul
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.279-288
    • /
    • 2011
  • To suggest the weed management technique for environment friendly rice cultivation, we investigated occurrence patterns of weeds, the actual condition of weed management, and rice yield at the environment friendly agricultural complex located in Honam and Chungnam regions. The practical performance of weed management was relatively satisfactory in decreasing order of agricultural technique with golden-apple-snail (GAS) > agricultural technique with duck (Duck) > agricultural technique with rice bran (RB) > agricultural technique with soft-shelled turtle (ST). In the rice fields employed by agricultural technique with GAS, the dominant weeds were Echinochloa crus-galli, Ludwigia prostrata, Monochoria vaginalis, Sagittaria trifolia, and Aneilema keisak. However, E. crus-galli, M. vaginalis, L. prostrata, Aeschynomene indica and Bidens frondosa were found as dominant weeds at the fields using the Duck and E. crus-galli, M. vaginalis, L. prostrata, Polyganum hydropiper and Eleocharis kuroguwai at the fields using RB. In comparison of rice yield ($5.2\;MT\;ha^{-1}$) obtained from the conventional cultivation using herbicides, about 93% was reached by Duck, about 91% by GAS, about 92% by RB, and about 78% by ST. When rice qualities obtained from environment friendly rice cultivation were compared with those from the conventional cultivation, the producing rates of perfect kernel, immature kernel, immature opaque kernel, cracked rice, and damaged kernel were lower in the former cultivation, whereas contents of protein, amylose, and fatty acid were similar in the two cultivation methods. The problems found in the environment friendly agriculture were poor plowing and harrowing, carless irrigation management, and geological poor condition as cultivation area with cold water. These have caused severe infestation of weeds, frequent incident of disease and insect pest, and rice lodging. This resulted in reduction of rice yield as high as about 32 to 79% as compared with the conventional cultivation using herbicides.

Degradation of the Chlorothalonil by Functional Zeolite-KCIO3 Complex (기능성 Zeolite-KCIO3 복합체에 의한 Chlorothalonil의 분해)

  • Choi, Choong-Lyeal;Park, Man;Lee, Dong-Hoon;Lee, Byung-Mook;Rhee, In-Koo;Choi, Jyung;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • Salt occlusion in Zeolite is a unique phenomenon that takes place only when the salt size is similar to the window size of host zeolite. $KCIO_3$-occluded Zeolite, as an environment-friendly oxidant, has a high potential for effective removal of various organic pollutants. This study was carried to investigate the characteristics and the removal kinetics of fungicide chlorothalonil by zeolite-$KCIO_3$ complex. About 10% of $KCIO_3$ was occluded in zeolite pores synthesized by salt-thermal method from fly ash, although the occlusion amount was relatively less compared to that of nitrate salts. By occlusion with $KCIO_3$, no remarkable changes were found in X-ray diffraction patterns of cancrinite, whereas some decrease of overall peak intensities was found with those of sodalite. Different releasing kinetics of $CIO_3^-$ ion were observed in distilled water and soil solution from zeolite-$KCIO_3$ complex. Two reactions, hydration and diffusion, seem to be related with the release of $KCIO_3$. Therefore, the release isotherm of $CIO_3^-$ ion well fitted to the power function model which indicate the release was made by hydration and diffusion. The removal of chlorothalonil by zeolite and $KCIO_3$ reached at reaction equilibrium within 6 hours by 18% and 47% respectively. However, the chlorothalonil removal by the zeolite-$KCIO_3$ complex increased slowly and steadily up to 92% in 96 hours. These findings suggested that zeolite-$KCIO_3$ complex could be applied for effective removal of organic contaminants in the soil and aqueous environment.

Prospect and Production Technology of Brand Rice (브랜드 쌀의 생산기술과 전망)

  • 손종록
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.51-70
    • /
    • 2003
  • In recent years, Korean rice must compete with the rice of advanced countries under Doha Development Agenda(DDA) and free Trade Agreement(FTA). Therefore we should find more active and positive solution in rice industry according to the inncreasing power of international pressure. Increasing rice production was the most important policy during the past food-deficient days, but recently, with overproduction of rice, various circulation system by the brand(price)-differentiation should be settled in a recent market of Korea. Nowadays, some advanced rice farmers and Rice Processing Complex(RPC) managers developed new brands of rice with high-quality, adding healthy materials and environment-friendly farming methods. Therefore, the future strategy of making a new brand rice should be planned including selection of rice variety, cultural and post-harvest techniques, circulation and processing methods to compete against foreign rice. And environment-friendly farming is also recommendable for food safety and differentiate from imported rice. For the purpose of successful brand-rice, the following points might be considered. Firstly, selection of good quality rice and continual development of good variety must be conducted for the differentiation of Korean rice from foreign rice. Secondly, a special contract between producer and consumer with functional-rice, organic filming-rice, specific-rice will be recommendable. Thirdly, improvement of post-harvest management and milling system are necessary for the production of differentiated-rice. Fortunately, standard of inspection, rules of description for brand-rice must be developed by a more scientific examination in order to settlement of trust for consumer. Finally, provincial or regional-representative brand rice must be settled and conducted for the development of agreement market system between producer and consumer.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

A Study on the Morphological Management of Major Landscape Elements in Organic Farming (유기농업단지 주요경관요소의 물리적 관리방안에 관한 연구)

  • An, Phil Gyun;Kong, Min Jea;Lee, Sang Min;Kim, Sang Bhum;Jo, Jung Lae;Kim, Nam Chun;Shin, Ji Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.107-116
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Therefore, this study was carried out in the conservative aspects of rural landscapes in order to effectively manage the landscape of organic agriculture and, intended to be used to maintain and preserve natural and ecologically harmonious landscapes by deriving management methods suitable for landscape elements targeting the major landscape elements of the organic farming complex. To carry out, this study performed the experts survey which is composed of 13 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result, Farm land was formed in a square shape, concentrated in an independent space, planted companion plants around the crop, and covered with plants to manage the borders. As for the surrounding environment, it was analyzed that the aspart road system circulating through the village, the evergreen broad-leaved windbreak forest around the cultivated land, and the accent plant located at the entrance of the village were suitable. The hydrological environment consists of Round small pond made of stone in an open space, natural rivers around the village, and natural channels around the farmland, and The Major facilities are suitable for greenhouses that are shielded by plants in independent regions, and wooden duck houses located inside the cultivation area are suitable and The settlement facilities were analyzed to be suitable for single-story brick houses located in independent residential areas, pavilion located with greenery in the center of the village, and educational spaces shielded with wood from arable land. If supplementary evaluation criteria suitable for the management of organic farming landscape are additionally supplemented based on the results derived from this study, It is expected to enhance the landscape value of ecologically superior organic farming.

Development of a Simultaneous Analytical Method for Diquat, Paraquat and Chlormequat in Animal Products Using UPLC-MS/MS

  • Cho, Il Kyu;Rahman, Md. Musfiqur;Seol, Jae Ung;Noh, Hyun Ho;Jo, Hyeong-Wook;Moon, Joon-Kwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.368-374
    • /
    • 2020
  • BACKGROUND: The residual analysis of polar pesticides has remained a challenge. It is even more difficult to simultaneously analyze multiple polar pesticides. Diquat, paraquat, and chlormequat are typical examples of highly polar pesticides. The existing methods for the analysis of diquat, paraquat and chlormequat are complex and time consuming. Therefore, a simple, quick and effective method was developed in the represent study for simultaneous analysis of diquat, paraquat and chlormequat in animal products, meat and fat using UPLC-MS/MS. METHODS AND RESULTS: Sample extraction was carried out using acidified acetonitrile and water and re- extracted with acidified acetonitrile and combine the extracts followed by centrifugation. The extract was then cleaned up with a HLB cartridge after reconstitution with acidic acetonitrile and water. The method was validated in quintuplicate at three different concentrations. The limits of detection (LOD) and quantification (LOQ) were 0.0015 and 0.005 mg/L, respectively. Matrix suppression effect was observed for all of the analytes. A seven point matrix matched calibration curve was constructed for each of the compound resulted excellent linearity with determination coefficients (R2) ≥ 0.991. Accuracy and precision of the method was calculated from the recovery and repeatability and ranged from 62.4 to 119.7% with relative standard deviation less than 18.8%. CONCLUSION: The recovery and repeatability of the developed method were in the acceptable range according to the Codex Alimentarius guideline. The developed method can be applied for the routine monitoring of diquat, paraquat, and chlormequat in animal products, meat and fat.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF