• Title/Summary/Keyword: Environment of Architecture

Search Result 7,010, Processing Time 0.037 seconds

Analyzing the Negotiation Process for the Adoption of Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing Arising from their Utilization using the Conflict Management Process (갈등 관리 프로세스에 의한 ABS협상의 갈등 사례 분석)

  • Min, Seo-Jeong;Lee, Gwan-Gyu;Kim, Joon-Soon
    • Journal of Environmental Policy
    • /
    • v.10 no.2
    • /
    • pp.3-19
    • /
    • 2011
  • Nagoya Protocol designed to establish criteria about material trade of biological genetic resources(ABS) was adopted in the 10th conference of the Parties to the Convention on Biological Diversity. In the course of the negotiation for adoption of the protocol, there was conflict between developed and developing countries, resource-rich and poor countries, and multinational corporations and environmentalists. This study investigates conflict process, subjects, issues and major factors in the negotiation case, and analyzes the negotiation by using the Conflict Management Process. To develope conflict management strategies for various conflict cases, we examine previous studies and analyze the intersectional conflict factors of this case and general cases, such as Fundamental side, Resource-allocation side, and Communication/Information-sharing side. These analyses of conflict prevention/resolution of the ABS negotiation show the importance of building mutual trust among stakeholders, enhancing mediator training, and constructing appropriate legislative/policy systems for successful conflict management.

  • PDF

A Real-Time and Statistical Visualization Methodology of Cyber Threats Based on IP Addresses (IP 주소 기반 사이버공격 실시간 및 통계적 가시화 방법)

  • Moon, Hyeongwoo;Kwon, Taewoong;Lee, Jun;Ryou, Jaecheol;Song, Jungsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.465-479
    • /
    • 2020
  • Regardless of the domestic and foreign governments/companies, SOC (Security Operation Center) has operated 24 hours a day for the entire year to ensure the security for their IT infrastructures. However, almost all SOCs have a critical limitation by nature, caused from heavily depending on the manual analysis of human agents with the text-based monitoring architecture. Even though, in order to overcome the drawback, technologies for a comprehensive visualization against complex cyber threats have been studying, most of them are inappropriate for the security monitoring in large-scale networks. In this paper, to solve the problem, we propose a novel visual approach for intuitive threats monitoring b detecting suspicious IP address, which is an ultimate challenge in cyber security monitoring. The approach particularly makes it possible to detect, trace and analysis of suspicious IPs statistically in real-time manner. As a result, the system implemented by the proposed method is suitably applied and utilized to the real-would environment. Moreover, the usability of the approach is verified by successful detecting and analyzing various attack IPs.

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

A Geostatistical Approach for Improved Prediction of Traffic Volume in Urban Area (공간통계기법을 이용한 도시 교통량 예측의 정확성 향상)

  • Kim, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.138-147
    • /
    • 2010
  • As inaccurate traffic volume prediction may result in inadequate transportation planning and design, traffic volume prediction based on traffic volume data is very important in spatial decision making processes such as transportation planning and operation. In order to improve the accuracy of traffic volume prediction, recent studies are using the geostatistical approach called kriging and according to their reports, the method shows high predictability compared to conventional methods. Thus, this study estimated traffic volume data for St. Louis in the State of Missouri, USA using the kriging method, and tested its accuracy by comparing the estimates with actual measurements. In addition, we suggested a new method for enhancing the accuracy of prediction by the kriging method. In the new method, we estimated traffic volume data: first, by applying anisotropy, which is a characteristic of traffic volume data appearing in determining variogram factors; and second, by performing co-kriging analysis using interstate highway, which is in a high spatial correlation with traffic volume data, as a secondary variable. According to the results of the analysis, the analysis applying anisotropy showed higher accuracy than the kriging method, and co-kriging performed on the application of anisotropy produced the most accurate estimates.

Real-Time Human Tracker Based on Location and Motion Recognition of User for Smart Home (스마트 홈을 위한 사용자 위치와 모션 인식 기반의 실시간 휴먼 트랙커)

  • Choi, Jong-Hwa;Park, Se-Young;Shin, Dong-Kyoo;Shin, Dong-Il
    • The KIPS Transactions:PartA
    • /
    • v.16A no.3
    • /
    • pp.209-216
    • /
    • 2009
  • The ubiquitous smart home is the home of the future that takes advantage of context information from the human and the home environment and provides an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. We present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. We used four network cameras for real-time human tracking. This paper explains the real-time human tracker's architecture, and presents an algorithm with the details of two functions (prediction of human location and motion) in the real-time human tracker. The human location uses three kinds of background images (IMAGE1: empty room image, IMAGE2: image with furniture and home appliances in the home, IMAGE3: image with IMAGE2 and the human). The real-time human tracker decides whether the human is included with which furniture (or home appliance) through an analysis of three images, and predicts human motion using a support vector machine. A performance experiment of the human's location, which uses three images, took an average of 0.037 seconds. The SVM's feature of human's motion recognition is decided from pixel number by array line of the moving object. We evaluated each motion 1000 times. The average accuracy of all the motions was found to be 86.5%.

Evaluating the groundwater prediction using LSTM model (LSTM 모형을 이용한 지하수위 예측 평가)

  • Park, Changhui;Chung, Il-Moon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.273-283
    • /
    • 2020
  • Quantitative forecasting of groundwater levels for the assessment of groundwater variation and vulnerability is very important. To achieve this purpose, various time series analysis and machine learning techniques have been used. In this study, we developed a prediction model based on LSTM (Long short term memory), one of the artificial neural network (ANN) algorithms, for predicting the daily groundwater level of 11 groundwater wells in Hankyung-myeon, Jeju Island. In general, the groundwater level in Jeju Island is highly autocorrelated with tides and reflected the effects of precipitation. In order to construct an input and output variables based on the characteristics of addressing data, the precipitation data of the corresponding period was added to the groundwater level data. The LSTM neural network was trained using the initial 365-day data showing the four seasons and the remaining data were used for verification to evaluate the fitness of the predictive model. The model was developed using Keras, a Python-based deep learning framework, and the NVIDIA CUDA architecture was implemented to enhance the learning speed. As a result of learning and verifying the groundwater level variation using the LSTM neural network, the coefficient of determination (R2) was 0.98 on average, indicating that the predictive model developed was very accurate.

Fine Grained Resource Scaling Approach for Virtualized Environment (가상화 환경에서 세밀한 자원 활용률 적용을 위한 스케일 기법)

  • Lee, Donhyuck;Oh, Sangyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.11-21
    • /
    • 2013
  • Recently operating a large scale computing resource like a data center becomes easier because of the virtualization technology that virtualize servers and enable flexible resource provision. The most of public cloud services provides automatic scaling in the form of scale-in or scale-out and these scaling approaches works well to satisfy the service level agreement (SLA) of users. However, a novel scaling approach is required to operate private clouds that has smaller amount of computing resources than vast resources of public clouds. In this paper, we propose a hybrid server scaling architecture and related algorithms using both scale-in and scale-out to achieve higher resource utilization rate for private clouds. We uses dynamic resource allocation and live migration to run our proposed algorithm. Our propose system aims to provide a fine-grain resource scaling by steps. Thus private cloud systems are able to keep stable service and to reduce server management cost by optimizing server utilization. The experiment results show that our proposed approach performs better in resource utilization than the scale-out approach based on the number of users.

Implementation of Wired Sensor Network Interface Systems (유선 센서 네트워크 인터페이스 시스템 구현)

  • Kim, Dong-Hyeok;Keum, Min-Ha;Oh, Se-Moon;Lee, Sang-Hoon;Islam, Mohammad Rakibul;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.31-38
    • /
    • 2008
  • This paper describes sensor network system implementation for the IEEE 1451.2 standard which guarantees compatibilities between various wired sensors. The proposed system consists of the Network Capable Application Processor(NCAP) in the IEEE 1451.0, the Transducer Independent Interface(TII) in the IEEE 1451.2, the Transducer Electronic Data Sheet(TEDS) and sensors. The research goal of this study is to minimize and optimize system complexity for IC design. The NCAP is implemented using C language in personal computer environment. TII is used in the parallel port between PC and an FPGA application board. Transducer is implemented using Verilog on the FPGA application board. We verified the proposed system architecture based on the standards.