• 제목/요약/키워드: Enveloping Worm

검색결과 7건 처리시간 0.022초

장구형 웜기어를 이용한 감속기 설계 (Design of a Reduction Gear using Double-Enveloping Worm Gear)

  • 김태우;황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.785-789
    • /
    • 2013
  • Worm gear sets may be either single- or double-enveloping. In a single-enveloping set, the worm wheel is cut into a concave surface, thus partially enclosing the worm when meshed. The double-enveloping worm gear is similar to the single-enveloping gear; however, the worm envelopes the worm gear. Thus both are throated. The double-enveloping worm gear has more of the tooth surface in contact than the single-enveloping worm gear. The larger contact area increases the load-carrying capacity. For this reason, double-enveloping worm gearing is widely applied in heavy-duty machinery, for applications including construction and metallurgy. In this paper, we designed a compact reduction gear that is highly efficient using double-enveloping worm gears. We calculated the bearing load in the worm gearing to select the bearing and the housing surface area according to the recommended values from AGMA(American Gear Manufacturers Association). The finite element method was used to assess the structural integrity.

장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석 (Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape)

  • 강신준;김용환
    • 소성∙가공
    • /
    • 제28권4호
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

전체면 접촉 절삭공구를 이용한 장구형 웜나사 치형가공 연구 (Double Enveloping Worm Thread Tooth Machining Study using Full Face Contact Cutting Tool)

  • 강신준;김용환
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.144-150
    • /
    • 2020
  • In this paper, we propose the generation of a double enveloping worm thread profile with a non-developable ruled surface. Thread surface machining cuts all the way from the tip to the tooth root at one time, like full-face contact machining, rather than cutting several times like point machining. This cutting can reduce the cutting duration and achieve the smooth surface that does not require a grinding process for the threaded surface. The mathematical model of the cutting process was developed from theoretical equations, and the tooth surface was generated using two parameters and modeled in the CATIA using the generated Excel data. Additionally, the machining process of the worm was simulated in a numerical control simulation system. To verify the validity of the proposed method, the deviation between the modeling and the workpiece was measured using a 3D measuring machine.

Design and Simulation of Meshing of New Type of Worm-Gear Drive with Localized Contacts

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.408-417
    • /
    • 2000
  • The design and simulation of meshing of a single enveloping worm-gear drive with modified surfaces is presented. Generally worm-gear is generated by the hob which is identical to the worm. This process guarantees the conjugation between the worm and the gear but results in a line contact at every instant which is very sensitive to misalignment. The localization of bearing contact is necessary to reduce the sensitivity of the worm-gear drive to misalignment. Practically this localization is achieved by application of an oversized worm type hob to cut the worm-gear. The oversized hob approach is very practical and effective to localize bearing contact but can not provide the conjugation between the worm and the modified worm-gear. This work proposes an analytical procedure to make the worm surface conjugate to the worm-gear which is cut by the oversized hob. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and the determination of the transmission errors, the contact ratio and the principle curvatures. The developed approach has been applied for ZK type of single-enveloping worm-gear drives and the developed theory is illustrated with a numerical example.

  • PDF

웜기어의 강도평가 및 설계시스템 개발에 관한 연구 (Development of Durability Estimation and Design Systems of Worm Gears)

  • 정태형;백재협
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.207-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.

  • PDF

웜기어의 강도평가 및 설계시스템 개발에 관한 연구 (Development of Durability Estimation and Design Systems of Worm Gears)

  • 정태형;백재협
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.216-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.