• 제목/요약/키워드: Envelope material

검색결과 98건 처리시간 0.029초

주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구 (Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System)

  • 윤종호;한규복;안영섭
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

건물에너지효율등급향상을 위한 고효율 건물외피 성능 연구 (Study on High Performance Building Envelope for raising Building Energy Rating)

  • 현종훈;홍성희;박효순;최무혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.801-806
    • /
    • 2008
  • The best plan is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. New insulation materials, which have the high performance and are above insulation standard, have been developed steadily. Because there are not studies on the building energy rating system and economic evaluation considering new insulation materials, these matters should be studied. In result alternatives, which applied 6 high performance material each, influence, reduce the annual heating energy and raise the building energy rating. Applying the vacuum insulation material(Case1,2) and vacuum or triple glazing can retrieves the investment with $120 and $$140{\sim}150$ per barrel each.

  • PDF

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

코너 특정점 기반의 영상분석을 활용한 진공단열재 결함 검출 (Defect detection of vacuum insulation panel using image analysis based on corner feature detection)

  • 김범수;양정현;김연원
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.398-402
    • /
    • 2022
  • Vacuum Insulation Panel (VIP) is an high energy efficient insulation system that facilitate slim but high insulation performance, based on based on a porous core material evacuated and encapsulated in a multi-barrier envelope. Although VIP has been on the market for decades now, it wasn't until recently that efforts have been initiated to propose a standard on aging testing. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time. It is hard to visually determine at an early stage. Recently, a method of analyzing the damage on the a material surface by applying image processing technology has been widely used. These techniques provide fast and accurate data with a non-destructive way. In this study, the surface VIP images were analyzed using the Harris corner detection algorithm. As a result, 171,333 corner points in the normal packaging were detected, whereas 32,895 of the defective packaging, which were less than the normal packaging. were detected. These results are considered to provide meaningful information for the determination of VIP condition.

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

바크하우젠 노이즈에 의한 1Cr-0.5Mo 강의 열화도 평가 (Degradation Evaluation of 1Cr-0.5Mo Steel using Barkhausen Noise)

  • 김민기;박종서;이윤희;김철기;유권상
    • 한국자기학회지
    • /
    • 제21권4호
    • /
    • pp.136-140
    • /
    • 2011
  • 고온에서 운용 중인 설비의 안전성 평가를 위하여 사용기간 동안 열화된 재료의 물성을 측정하여야 하나, 운용 중인 설비에서 열화도가 다른 여러 종류의 시편을 획득하기가 쉽지 않다. 따라서 본 연구에서는 열교환기의 튜브와 압력용기의 재료로 널리 사용되고 있는 1Cr-0.5Mo 강을 인공열화시켜 시편으로 사용하였다. 열화도 평가를 위하여 바크하우젠 노이즈의 포락선(envelope)에서 첨두값(peak value) 사이의 간격, 보자력 및 경도를 실온에서 측정하였다. 열화도의 증가에 따라 세 값은 모두 감소하였는데, 이는 기지의 탄화물 입자가 조대화 됨으로써 탄화물 석출에 의한 기지의 연화가 결정립계의 경화보다 우세하게 작용하여 나타나는 것으로 판단되었다. 포락선 첨두값 사이의 간격과 경도값의 선형관계를 이용하여 자기적 특성 측정에 의해 간접적으로 1Cr-0.5Mo 강의 열화도를 비파괴적으로 평가할 수 있는 근거를 제시하였다.

돌외 캘러스 추출물의 항염, 항알러지 및 S. aureus에 의한 각질세포 손상 완화 효능 (Effects of Gynostemma pentaphyllum Callus Extract on Anti-inflammation, Anti-allergy, and Alleviation of Keratinocyte Damage Caused by S. aureus)

  • 이혜숙;이혜민;김한영
    • 대한화장품학회지
    • /
    • 제47권2호
    • /
    • pp.99-105
    • /
    • 2021
  • 본 연구는 울릉도 돌외(Gynostemma pentaphyllum) 잎으로부터 캘러스 유도 및 추출한 후, 피부장벽 기능과 관련된 항염증, 항알러지, 각질세포외막 형성, S. aureus에 의한 각질형성세포 손상 완화 효능을 확인하고자 수행되었다. 돌외 캘러스 추출물의 피부에 대한 항염증 효능을 확인하기 위해, PAR-2 agonist로 활성화된 primary epidermal keratinocyte (HEKa)에서 염증성 사이토카인들의 발현을 확인한 결과, 돌외 캘러스 추출물은 IL-8, IL-25, TSLP 발현을 저해하는 효능이 있는 것을 확인하였다. RBL-2H3 세포를 이용한 β-hexosaminidase assay 시험을 통해 항알러지 효능을 확인한 결과, β-hexosaminidase 방출을 억제하는 효과를 보였다. 또한, 돌외 캘러스 추출물은 HaCaT 세포에서 각질세포외막(cornified envelope) 형성 효과가 있음을 확인하였고, HaCaT 세포와 S. aureus 공배양 실험을 통해 S. aureus에 의한 각질형성세포 생존율 감소를 완화하는 효능이 있음을 확인하였다. 본 연구 결과를 종합해보면, 울릉도 돌외 캘러스 추출물은 항염, 항알러지, S. aureus에 의한 각질세포 손상 완화 효능에 유효한 소재의 가능성을 확인하였고, 피부장벽 개선을 위한 화장품 소재로서 활용 가치가 있을 것으로 판단된다.

General stress-strain model for concrete or masonry response under uniaxial cyclic compression

  • La Mendola, Lidia;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.435-454
    • /
    • 2002
  • The paper proposes analytical forms able to represent with very good approximation the constitutive law experimentally deducible by means of uniaxial cyclic compressive tests on material having softening post-peak behaviour in compression and negligible tensile strength. The envelope, unloading and reloading curves characterizing the proposed model adequately approach structural responses corresponding to different levels of nonlinearity and ductility, requiring a not very high number of parameters to be calibrated experimentally. The reliability of the model is shown by comparing the results that it is able to provide with the ones analytically deduced from two reference models (one for concrete, another for masonry) available in the literature, and with experimental results obtained by the authors in the framework of a research in progress.

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.43-54
    • /
    • 2017
  • In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.