DOI QR코드

DOI QR Code

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

  • Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan, University Blvd)
  • Received : 2016.04.06
  • Accepted : 2016.12.28
  • Published : 2017.04.10

Abstract

In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.

Keywords

References

  1. Aboudi, J. (1988), "Micro-mechanical analysis of the strength of unidirectional fibre composites", Compos. Sci. Technol., 33, 79-96. https://doi.org/10.1016/0266-3538(88)90012-7
  2. Aboudi, J. (1989), "Micro-mechanical analysis of composites by the method of cells", Appl. Mech. Rev., 42, 193-221. https://doi.org/10.1115/1.3152428
  3. Adams, D.F. (1970), "Inelastic analysis of a unidirectional composite subjected to transverse normal loading". J. Compos. Mater., 4, 310-328. https://doi.org/10.1177/002199837000400303
  4. Adams, D.F. and Crane, D.A. (1984), "Combined loading micromechanical analysis of a unidirectional composite", Compos., 15(3), 181-192. https://doi.org/10.1016/0010-4361(84)90273-8
  5. Adams, D.F. and Crane, D.A. (1984), "Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading", Comput. Struct., 18(6), 1153-1165, https://doi.org/10.1016/0045-7949(84)90160-3
  6. Adams, D.F. and Doner, D.R. (1967), "Transverse normal loading of a unidirectional composite", J. Compos. Mater., 1, 152-164. https://doi.org/10.1177/002199836700100205
  7. Aghaei, M., Forouzan M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 2015
  8. Aghdam, M.M, Pavier, M.J. and Smith, D.J. (2001), "Micro-mechanics of off-axis loading of fibrous composites using finite element analysis", Int. J. Solid. Struct., 38(22), 3905-3925. https://doi.org/10.1016/S0020-7683(00)00248-1
  9. Aghdam, M.M., Smith, D.J. and Pavier, M.J. (2000), "Finite element micro-mechanical modeling of yield and collapse behaviour of metal matrix composites", J. Mech. Phys. Solid., 48(3), 499-528. https://doi.org/10.1016/S0022-5096(99)00041-1
  10. Ahmadi, I. and Aghdam, M.M. (2010a), "Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method", Comput. Mech., 64(3), 387-398.
  11. Ahmadi, I. and Aghdam, M.M. (2010b), "Analysis of micro-stresses in the SiC/Ti metal matrix composite using a truly local meshless method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(8), 1567-1577. https://doi.org/10.1243/09544062JMES1888
  12. Atluri, S.N. and Shen, S. (2002), The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press.
  13. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
  14. Atluri, S.N. and Zhu, T. (2000), "The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elastostatics", Comput. Mech., 25, 169-179. https://doi.org/10.1007/s004660050467
  15. Belinha, J. and Dinis, L.M.J.S. (2006), "Analysis of plates and laminates using the element-free Galerkin method", Comput. Struct., 84, 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013
  16. Belytschco, T., Lu, Y.Y. and Gu, L. (1995), "Crack Propagation by Element Free Galerkin Methods", Eng. Fract. Mech., 51(2), 211-222.
  17. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  18. Brockenbrough, J.R., Suresh, S. and Wienecke, H.A. (1991), "Deformation of metal-matrix composites with continuous fibers: Geometrical effects of fiber distribution and shape", Acta Metall. Mater., 5, 735-752.
  19. Carvelli, V. and Corigliano, A. (2004), "Transverse resistance of long-fibre composites: influence of the fibre-matrix interface", Proceedings of the 11th European conference on composite materials ECCM11, Rhodes, Greece, May-June.
  20. Cheng, J.Q. Lee, H.P. and Li, H. (2004), "Development of a meshless finite mixture (MFM) method", Struct. Eng. Mech., 17(5), 671-690. https://doi.org/10.12989/sem.2004.17.5.671
  21. Ching, H.K. and Batra, R.C. (2001), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", CMES: Comput. Model. Eng. Sci., 2(2), 273-290.
  22. Cooper, G.A. (1966), "Orientation effects in fibre-reinforced metals", J. Mech. Phys. Solid., 14, 103-111. https://doi.org/10.1016/0022-5096(66)90041-X
  23. Dang, T.D. and Sankar, B.V. (2008), "Meshless local Petrov-Galerkin micromechanical analysis of periodic composites including shear loadings", CMES: Comput. Model. Eng. Sci., 26(3), 169-187.
  24. Dvorak, G.J., Rao, M.S.M. and Tarn, J.Q. (1973), "Yielding in unidirectional Composites under external loads and temperature changes", J. Compos. Mater., 7, 194-216. https://doi.org/10.1177/002199837300700204
  25. Erfani, S. and Akrami, V. (2016), "Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model", Struct. Eng. Mech., 20(4), 913-930.
  26. Foy, R.L. (1973) "Theoretical post-yielding behaviour of composite laminates part I- Inelastic micromechanics", J. Compos. Mater., 7, 179-193.
  27. Gu, Y.T. and Liu, G.R. (2001), "A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analysis of thin plates", CMES: Comput. Model. Eng. Sci., 2(4), 463-476.
  28. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J. and Ansari, R. (2015), "Interphase effects on the thermo-mechanical properties of three-phase composites", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 230(19), 3361-3371. https://doi.org/10.1177/0954406215612830
  29. Hu, S. (1996), "The transverse failure of a single-fiber metal-matrix composite: Experiment and modeling", Compos. Sci. Technol., 56, 667-676 https://doi.org/10.1016/0266-3538(96)00051-6
  30. Jackson, P.W. and Cratchley, D. (1966), "The effect of fibre orientation on the tensile strength of fibre- reinforced metals", J. Mech. Phys. Solid., 14, 49-64. https://doi.org/10.1016/0022-5096(66)90019-6
  31. Kanok-Nukulchai, W., Barry, W.J. and Saran-Yasoontorn, K. (2001), "Meshless formulation for shear-lockling free bending elements", Struct. Eng. Mech., 11(2), 123-132. https://doi.org/10.12989/sem.2001.11.2.123
  32. Lekhnitskii, S.G. (1963), Theory of Elasticity of an Anisotropic Elastic Body, Holden Day Inc., San Francisco. (English translation from Russian)
  33. Li, D.S. and Wisnom, M.R. (1996), "Micromechanical modeling of SCS-6 fiber reinforced Ti-6Al-4V under transverse tensioneffect of fiber coating", Comput. Mater., 30(5), 561-88. https://doi.org/10.1177/002199839603000502
  34. Liu, W.K., Chen. Y., Chang, C.T. and Belytschko, T. (1996), "Advances in multiple scale kernel particle methods", Comput. Mech., 18, 73-111. https://doi.org/10.1007/BF00350529
  35. Long, S.Y., Liu, K.Y. and Hu, D.A. (2006), "A new meshless method based on MLPG for elastic dynamic problems", Eng. Anal. Bound. Elem., 30, 43-48. https://doi.org/10.1016/j.enganabound.2005.09.001
  36. Melro, A.R., Camanho, P.P., Andrade, Pires, F.M. and Pinho, S.T. (2013), "Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II-micromechanical analyses", Int. J. Solid. Struct., 50, 1906-1915. https://doi.org/10.1016/j.ijsolstr.2013.02.007
  37. Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A. and Arnold, S.M. (2012), "Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories", J. Reinf. Plast. Compos., 21, 1467-1487.
  38. Naik, R.A. and Crews, Jr J.H. (1993), "Micromechanical analysis of fiber-matrix interface stresses under thermomechanical loadings", Composite Materials: Testing and Design (Vol. II), ASTM STP 1206, American Society for Testing and Materials, Philadelphia, PA, 205-219.
  39. Nayroles, B., Touzot, B. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252
  40. Nedele, M.R. and Wisnom, M.R. (1994), "Finite element micromechanical modeling of a unidirectional composite subjected to axial shear loading", Compos., 25(44), 263-272. https://doi.org/10.1016/0010-4361(94)90218-6
  41. Nimmer, R.P. (1990), "Fibre-matrix interface effects in the presence of thermally induced residual stress", J. Compos. Tech. Res. JCTRER, 12(2), 65-75. https://doi.org/10.1520/CTR10181J
  42. Nimmer, R.P., Bankert, R.J., Russell, E.S., Smith, G.A. and Wright, P.K. (1991), "Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites", J. Compos. Tech. Res. JCTRER, 13(1), 3-13. https://doi.org/10.1520/CTR10068J
  43. Pipes, R.B. and Cole, B.W. (1973), "On the off-axis strength test for anisotropic materials", J. Compos. Mater., 7, 246-256. https://doi.org/10.1177/002199837300700208
  44. Rohwer, K. (2015), "Predicting fiber composite damage and failure", J. Compos. Mater., 49(21), 2673-2683. https://doi.org/10.1177/0021998314553885
  45. Sayyidmousavia, A., Bougheraraa, H. and Fawaz, Z. (2014), "A micromechanical approach for the fatigue failure prediction of unidirectional polymer matrix composites in off-axis loading including the effect of viscoelasticity", Adv. Compos. Mater., 24, 65-77.
  46. Sirivedin, S., Han, S.Y. and Lee, K.S. (2007), "Micromechanics analysis of progressive failure in cross-ply carbon fiber/epoxy composite under uniaxial loading", J. Mech. Sci. Technol., 21(12), 2023-2030. https://doi.org/10.1007/BF03177460
  47. Sladek, J., Sladek, V., Krivacek, J., Wen, P.H. and Zhang, Ch. (2007), "Meshless local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load", Comput. Meth. Appl. Mech. Eng., 196, 2681-2691 https://doi.org/10.1016/j.cma.2007.01.014
  48. Sun, C.T. and Vaidya, R.S. (1996) "Prediction of composite properties from a representative volume element", Compos. Sci. Tech., 56, 171-179. https://doi.org/10.1016/0266-3538(95)00141-7
  49. Totry, E., Gonzalez, C. and LLorca, J. (2008), "Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics", Compos. Sci. Tech., 68(15-16), 3128-3136. https://doi.org/10.1016/j.compscitech.2008.07.011
  50. Vaughan, T.J. and McCarthy, C.T. (2011), "Micromechanical modeling of the transverse damage behaviour in fibre reinforced composites", Compos. Sci. Tech., 71, 388-396. https://doi.org/10.1016/j.compscitech.2010.12.006
  51. Wisnom, M.R. (1990), "Factors affecting the transverse tensile strength of unidirectional continuous Silicon Carbide fibre reinforced 6061Aluminum", J. Compos Mater., 24(7), 707-726. https://doi.org/10.1177/002199839002400702
  52. Zahl, D.B., Schmauder, S. and McMeeking, R.M. (1994), "Transverse strength of metal matrix composites reinforced with strongly bonded continuous in regular arrangements", Acta Metallurgica et Materialia, 42(9), 2983-2997. https://doi.org/10.1016/0956-7151(94)90395-6
  53. Zhu, C. and Sun, C.T. (2003), "Micromechanical modeling of fiber composites under off-axis loading", J. Thermoplas. Compos. Mater., 16, 333-344. https://doi.org/10.1177/0892705703016004004

Cited by

  1. A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites vol.72, pp.6, 2017, https://doi.org/10.12989/sem.2019.72.6.713