Browse > Article
http://dx.doi.org/10.12989/sem.2017.62.1.043

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading  

Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan, University Blvd)
Publication Information
Structural Engineering and Mechanics / v.62, no.1, 2017 , pp. 43-54 More about this Journal
Abstract
In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.
Keywords
micromechanics of failure; off-axis loading; biaxial loading; meshless methods; failure envelope;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Gu, Y.T. and Liu, G.R. (2001), "A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analysis of thin plates", CMES: Comput. Model. Eng. Sci., 2(4), 463-476.
2 Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J. and Ansari, R. (2015), "Interphase effects on the thermo-mechanical properties of three-phase composites", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 230(19), 3361-3371.   DOI
3 Hu, S. (1996), "The transverse failure of a single-fiber metal-matrix composite: Experiment and modeling", Compos. Sci. Technol., 56, 667-676   DOI
4 Jackson, P.W. and Cratchley, D. (1966), "The effect of fibre orientation on the tensile strength of fibre- reinforced metals", J. Mech. Phys. Solid., 14, 49-64.   DOI
5 Kanok-Nukulchai, W., Barry, W.J. and Saran-Yasoontorn, K. (2001), "Meshless formulation for shear-lockling free bending elements", Struct. Eng. Mech., 11(2), 123-132.   DOI
6 Lekhnitskii, S.G. (1963), Theory of Elasticity of an Anisotropic Elastic Body, Holden Day Inc., San Francisco. (English translation from Russian)
7 Li, D.S. and Wisnom, M.R. (1996), "Micromechanical modeling of SCS-6 fiber reinforced Ti-6Al-4V under transverse tensioneffect of fiber coating", Comput. Mater., 30(5), 561-88.   DOI
8 Liu, W.K., Chen. Y., Chang, C.T. and Belytschko, T. (1996), "Advances in multiple scale kernel particle methods", Comput. Mech., 18, 73-111.   DOI
9 Long, S.Y., Liu, K.Y. and Hu, D.A. (2006), "A new meshless method based on MLPG for elastic dynamic problems", Eng. Anal. Bound. Elem., 30, 43-48.   DOI
10 Melro, A.R., Camanho, P.P., Andrade, Pires, F.M. and Pinho, S.T. (2013), "Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II-micromechanical analyses", Int. J. Solid. Struct., 50, 1906-1915.   DOI
11 Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A. and Arnold, S.M. (2012), "Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories", J. Reinf. Plast. Compos., 21, 1467-1487.
12 Adams, D.F. and Crane, D.A. (1984), "Combined loading micromechanical analysis of a unidirectional composite", Compos., 15(3), 181-192.   DOI
13 Aboudi, J. (1988), "Micro-mechanical analysis of the strength of unidirectional fibre composites", Compos. Sci. Technol., 33, 79-96.   DOI
14 Aboudi, J. (1989), "Micro-mechanical analysis of composites by the method of cells", Appl. Mech. Rev., 42, 193-221.   DOI
15 Adams, D.F. (1970), "Inelastic analysis of a unidirectional composite subjected to transverse normal loading". J. Compos. Mater., 4, 310-328.   DOI
16 Adams, D.F. and Crane, D.A. (1984), "Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading", Comput. Struct., 18(6), 1153-1165,   DOI
17 Adams, D.F. and Doner, D.R. (1967), "Transverse normal loading of a unidirectional composite", J. Compos. Mater., 1, 152-164.   DOI
18 Nedele, M.R. and Wisnom, M.R. (1994), "Finite element micromechanical modeling of a unidirectional composite subjected to axial shear loading", Compos., 25(44), 263-272.   DOI
19 Naik, R.A. and Crews, Jr J.H. (1993), "Micromechanical analysis of fiber-matrix interface stresses under thermomechanical loadings", Composite Materials: Testing and Design (Vol. II), ASTM STP 1206, American Society for Testing and Materials, Philadelphia, PA, 205-219.
20 Nayroles, B., Touzot, B. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318.   DOI
21 Nimmer, R.P. (1990), "Fibre-matrix interface effects in the presence of thermally induced residual stress", J. Compos. Tech. Res. JCTRER, 12(2), 65-75.   DOI
22 Sayyidmousavia, A., Bougheraraa, H. and Fawaz, Z. (2014), "A micromechanical approach for the fatigue failure prediction of unidirectional polymer matrix composites in off-axis loading including the effect of viscoelasticity", Adv. Compos. Mater., 24, 65-77.
23 Nimmer, R.P., Bankert, R.J., Russell, E.S., Smith, G.A. and Wright, P.K. (1991), "Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites", J. Compos. Tech. Res. JCTRER, 13(1), 3-13.   DOI
24 Pipes, R.B. and Cole, B.W. (1973), "On the off-axis strength test for anisotropic materials", J. Compos. Mater., 7, 246-256.   DOI
25 Rohwer, K. (2015), "Predicting fiber composite damage and failure", J. Compos. Mater., 49(21), 2673-2683.   DOI
26 Sirivedin, S., Han, S.Y. and Lee, K.S. (2007), "Micromechanics analysis of progressive failure in cross-ply carbon fiber/epoxy composite under uniaxial loading", J. Mech. Sci. Technol., 21(12), 2023-2030.   DOI
27 Ahmadi, I. and Aghdam, M.M. (2010a), "Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method", Comput. Mech., 64(3), 387-398.
28 Aghaei, M., Forouzan M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 2015
29 Aghdam, M.M, Pavier, M.J. and Smith, D.J. (2001), "Micro-mechanics of off-axis loading of fibrous composites using finite element analysis", Int. J. Solid. Struct., 38(22), 3905-3925.   DOI
30 Aghdam, M.M., Smith, D.J. and Pavier, M.J. (2000), "Finite element micro-mechanical modeling of yield and collapse behaviour of metal matrix composites", J. Mech. Phys. Solid., 48(3), 499-528.   DOI
31 Ahmadi, I. and Aghdam, M.M. (2010b), "Analysis of micro-stresses in the SiC/Ti metal matrix composite using a truly local meshless method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(8), 1567-1577.   DOI
32 Atluri, S.N. and Shen, S. (2002), The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press.
33 Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127.   DOI
34 Atluri, S.N. and Zhu, T. (2000), "The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elastostatics", Comput. Mech., 25, 169-179.   DOI
35 Belinha, J. and Dinis, L.M.J.S. (2006), "Analysis of plates and laminates using the element-free Galerkin method", Comput. Struct., 84, 1547-1559.   DOI
36 Belytschco, T., Lu, Y.Y. and Gu, L. (1995), "Crack Propagation by Element Free Galerkin Methods", Eng. Fract. Mech., 51(2), 211-222.
37 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256.   DOI
38 Totry, E., Gonzalez, C. and LLorca, J. (2008), "Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics", Compos. Sci. Tech., 68(15-16), 3128-3136.   DOI
39 Sladek, J., Sladek, V., Krivacek, J., Wen, P.H. and Zhang, Ch. (2007), "Meshless local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load", Comput. Meth. Appl. Mech. Eng., 196, 2681-2691   DOI
40 Sun, C.T. and Vaidya, R.S. (1996) "Prediction of composite properties from a representative volume element", Compos. Sci. Tech., 56, 171-179.   DOI
41 Vaughan, T.J. and McCarthy, C.T. (2011), "Micromechanical modeling of the transverse damage behaviour in fibre reinforced composites", Compos. Sci. Tech., 71, 388-396.   DOI
42 Cheng, J.Q. Lee, H.P. and Li, H. (2004), "Development of a meshless finite mixture (MFM) method", Struct. Eng. Mech., 17(5), 671-690.   DOI
43 Wisnom, M.R. (1990), "Factors affecting the transverse tensile strength of unidirectional continuous Silicon Carbide fibre reinforced 6061Aluminum", J. Compos Mater., 24(7), 707-726.   DOI
44 Zahl, D.B., Schmauder, S. and McMeeking, R.M. (1994), "Transverse strength of metal matrix composites reinforced with strongly bonded continuous in regular arrangements", Acta Metallurgica et Materialia, 42(9), 2983-2997.   DOI
45 Zhu, C. and Sun, C.T. (2003), "Micromechanical modeling of fiber composites under off-axis loading", J. Thermoplas. Compos. Mater., 16, 333-344.   DOI
46 Brockenbrough, J.R., Suresh, S. and Wienecke, H.A. (1991), "Deformation of metal-matrix composites with continuous fibers: Geometrical effects of fiber distribution and shape", Acta Metall. Mater., 5, 735-752.
47 Carvelli, V. and Corigliano, A. (2004), "Transverse resistance of long-fibre composites: influence of the fibre-matrix interface", Proceedings of the 11th European conference on composite materials ECCM11, Rhodes, Greece, May-June.
48 Ching, H.K. and Batra, R.C. (2001), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", CMES: Comput. Model. Eng. Sci., 2(2), 273-290.
49 Cooper, G.A. (1966), "Orientation effects in fibre-reinforced metals", J. Mech. Phys. Solid., 14, 103-111.   DOI
50 Dang, T.D. and Sankar, B.V. (2008), "Meshless local Petrov-Galerkin micromechanical analysis of periodic composites including shear loadings", CMES: Comput. Model. Eng. Sci., 26(3), 169-187.
51 Dvorak, G.J., Rao, M.S.M. and Tarn, J.Q. (1973), "Yielding in unidirectional Composites under external loads and temperature changes", J. Compos. Mater., 7, 194-216.   DOI
52 Erfani, S. and Akrami, V. (2016), "Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model", Struct. Eng. Mech., 20(4), 913-930.
53 Foy, R.L. (1973) "Theoretical post-yielding behaviour of composite laminates part I- Inelastic micromechanics", J. Compos. Mater., 7, 179-193.