• Title/Summary/Keyword: Envelope Detection

Search Result 107, Processing Time 0.021 seconds

Identication of L328-IRS as a Proto-Brown Dwarf

  • Lee, Chang Won;Kim, Mi-Ryang;Kim, Gwanjeong;Siato, Masao;Myers, Philip C.;Kurono, Yasutaka
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.65.1-65.1
    • /
    • 2013
  • Our understanding of how brown dwarfs form is limited by observational evidence. We report identification of a L328-IRS as a proto-brown dwarf embedded in an isolated dense molecular core. This source exhibits typical properties of a protostar, however, its luminosity (~0.05 $L{\odot}$) is far below than expected from the least massive protostar by the standard star formation theory. The most likely mass accretion rate (~2.4 10-7 $M{\odot}$ yr-1) inferred from its small bipolar outflow is an order of magnitude less than the canonical value for a protostar. The mass available in its envelope is less than 0.1 $M{\odot}$. These points suggest that L328-IRS will accrete the mass of a brown dwarf, but not that of a star. L328 is found to be fairly well isolated from other nearby clouds and seems to be forming three sub-cores simultaneously through a gravitational fragmentation process. Altogether with these, our direct detection of inward motions in L328 which harbors this proto-brown dwarf clearly supports the idea that a brown dwarf forms like a normal star.

  • PDF

AJ Performance of the FH-CSS(Frequency Hopped - Chirp Spread Spectrum) Communication Systems (NED를 사용하는 FH-CSS(Frequency Hopped - Chirp Spread Spectrum)의 항 재밍 성능 분석)

  • Kim, Sung-Ho;Kim, Young-Jae;Hwang, Seok-Gu;Jo, Byoung-Gak;Shin, Kwan-Ho;Kim, Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • In the defence wireless communications, conventional Anti-Jamming techniques(Frequency Hopping/Spread Spectrum or Direct Sequence/Spread Spectrum) are used to overcome a intentional interfering signals which are single/multitone or partial band jammer etc. DS/SS techniques is very strong on tone jamming signal but not to be on a partial band jammer. So FH/SS AJ performances are expected method of an substitution of DS/SS, however FH/SS could not have good performance on some BMTJ(Band Multi-tone Jammer). So this paper proposes FH-CSS (Frequency Hopped - Chirp Spread Spectrum) to get more robustness against jammers(BMTJ, PBNJ) and analyze the AJ performances.

Nonbinary Convolutional Codes and Modified M-FSK Detectors for Power-Line Communications Channel

  • Ouahada, Khmaies
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.270-279
    • /
    • 2014
  • The Viterbi decoding algorithm, which provides maximum - likelihood decoding, is currently considered the most widely used technique for the decoding of codes having a state description, including the class of linear error-correcting convolutional codes. Two classes of nonbinary convolutional codes are presented. Distance preserving mapping convolutional codes and M-ary convolutional codes are designed, respectively, from the distance-preserving mappings technique and the implementation of the conventional convolutional codes in Galois fields of order higher than two. We also investigated the performance of these codes when combined with a multiple frequency-shift keying (M-FSK) modulation scheme to correct narrowband interference (NBI) in power-line communications channel. Themodification of certain detectors of the M-FSK demodulator to refine the selection and the detection at the decoder is also presented. M-FSK detectors used in our simulations are discussed, and their chosen values are justified. Interesting and promising obtained results have shown a very strong link between the designed codes and the selected detector for M-FSK modulation. An important improvement in gain for certain values of the modified detectors was also observed. The paper also shows that the newly designed codes outperform the conventional convolutional codes in a NBI environment.

The Enhancement of Range Resolution Using Analytic Signal Magnitude with Attenuation Compensation (감쇠보상 및 해석신호 크기를 이용한 거리 분해능의 향상)

  • Jo, Mun-Hyeon;Kim, Si-Hwan;Choe, Jong-Su
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.6
    • /
    • pp.1-6
    • /
    • 1984
  • This paper describes that the compensation of frequency dependent attenuation (F.D.A.) and faithful envelope detection using the analytic signal magnitude (A.S.M.) improve the range resolut ion in an acoustic medium. It is shown that a mean of computing the magnitude of. analytic signal is better than that of conventional A-mode. In addition, this proposed method is much easier than the above methods to detect two closely spaced interfaces on the A-mode. As the result of experiment, we obtained range resolution of 0.5 mm with transducer of 3.5 MHz. This method can be applied to medical experiment, diagonostic and nondestructive testing.

  • PDF

A DEMON Processing Robust to Interference of Tonals (토널 신호 간섭에 강인한 데몬 처리 기법)

  • Kim, Jin-Seok;Hwang, Soo-Bok;Lee, Chul-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.384-390
    • /
    • 2012
  • Passive sonars employ DEMON(Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. However, the conventional DEMON processing suffers from the interference of tonal signals because it extracts propeller signals and some types of tonal signals as well. If there are some tonals in the frequency band for DEMON processing, the conventional DEMON processing may additionally extract frequency informations originated from the interaction between different tonals. In this paper, we propose a modified DEMON processing, which can eliminate the interference of the tonals. The proposed algorithm removes tonals in DEMON processing band before demodulation processing, hence results the robustness to the interference of the tonals. Some numerical simulations demonstrate the improved performance of the proposed algorithm against the conventional algorithm.

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.

New Temporal Features for Cardiac Disorder Classification by Heart Sound (심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • We improve the performance of cardiac disorder classification by adding new temporal features extracted from continuous heart sound signals. We add three kinds of novel temporal features to a conventional feature based on mel-frequency cepstral coefficients (MFCC): Heart sound envelope, murmur probabilities, and murmur amplitude variation. In cardiac disorder classification and detection experiments, we evaluate the contribution of the proposed features to classification accuracy and select proper temporal features using the sequential feature selection method. The selected features are shown to improve classification accuracy significantly and consistently for neural network-based pattern classifiers such as multi-layer perceptron (MLP), support vector machine (SVM), and extreme learning machine (ELM).

Synthesis and Classification of Active Sonar Target Signal Using Highlight Model (하이라이트 모델을 이용한 능동소나 표적신호의 합성 및 인식)

  • Kim, Tae-Hwan;Park, Jeong-Hyun;Nam, Jong-Geun;Lee, Su-Hyung;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.135-140
    • /
    • 2009
  • In this paper, we synthesized active sonar target signals based on highlights model, and then carried out target classification using the synthesized signals. If the target aspect angle is changed, the different signals are synthesized. To know the result, two different experiments are done. First, The classification results with respect to each aspect angle are shown. Second, the results in two group in aspect angle are acquired. Time domain feature extraction is done using matched filter and envelope detection. It shows the pattern of each highlights. Artificial neural networks and multi-class SVM are used for classifying target signals.

A comparative study of cavitation inception of naval ship's propeller using on-board noise and vibration signals (선체 부착 소음/진동 센서를 이용한 함정 추진기 캐비테이션 초생 분석 비교 연구)

  • Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.243-249
    • /
    • 2023
  • The occurrence of cavitation on the propeller is directly linked to the naval ship's survivability, and it is necessary to design a propeller shape that delays the cavitation inception. However, the propeller cavitation can occur under various operating conditions, thus it is important to identify whether the propeller cavitation exists during operation as well as in the design phase. To this end, it is necessary to use noise or vibration signals on board to monitor the cavitation inception. In this study, a hydrophone and an accelerometer were installed on the ship hull right above the propeller to compare the performance of analyzing cavitation inception between acoustic and vibration signals. Also, a high speed camera was used to visually observe the occurrence of cavitation through an observation window. The measured results showed that the spectral shapes between acoustic and vibration signals were different, but the level increases at each frequency band and the overall level of the frequency band from 1 kHz to 10 kHz showed a similar tendency. The Detection of Envelope Modulation On Noise (DEMON) analysis also showed similar results for both acoustic and vibration signals, confirming that both hydrophones and accelerometers can be utilized in the analysis of cavitation inception.