DOI QR코드

DOI QR Code

A DEMON Processing Robust to Interference of Tonals

토널 신호 간섭에 강인한 데몬 처리 기법

  • 김진석 (국방과학연구소 소나체계개발단) ;
  • 황수복 (국방과학연구소 소나체계개발단) ;
  • 이철목 (국방과학연구소 소나체계개발단)
  • Received : 2012.06.22
  • Accepted : 2012.07.23
  • Published : 2012.08.31

Abstract

Passive sonars employ DEMON(Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. However, the conventional DEMON processing suffers from the interference of tonal signals because it extracts propeller signals and some types of tonal signals as well. If there are some tonals in the frequency band for DEMON processing, the conventional DEMON processing may additionally extract frequency informations originated from the interaction between different tonals. In this paper, we propose a modified DEMON processing, which can eliminate the interference of the tonals. The proposed algorithm removes tonals in DEMON processing band before demodulation processing, hence results the robustness to the interference of the tonals. Some numerical simulations demonstrate the improved performance of the proposed algorithm against the conventional algorithm.

수동 소나는 데몬 처리를 통해 수중 표적의 방사 소음으로부터 프로펠러 정보 추출한다. 그러나 기존 데몬 처리 기법은 프로펠러 신호 뿐 아니라 토널 신호 성분도 추출하므로 토널 신호의 간섭으로 인한 성능 저하가 있다. 다시 말해 데몬 처리 주파수 영역 내에 토널 신호가 존재하면 기존 데몬 처리 기법은 토널 신호의 간섭에 의한 신호 성분을 추가적으로 추출한다. 따라서 본 논문에서는 토널 신호 간섭을 제거할 수 있는 데몬 처리 기법을 제안한다. 제안된 기법은 데몬 처리를 위한 방사 소음 신호의 복조 과정 이전에 토널 신호를 추출 및 제거한다. 그러므로 제안된 데몬 처리 기법은 토널 신호의 간섭에 강인하다. 그리고 시뮬레이션을 통해서 제안된 기법이 기존의 데몬 처리 기법보다 성능이 우수함을 검증하였다.

Keywords

References

  1. R. O. Nielsen, Sonar Signal Processing, Artech House, 1990.
  2. A. D. Waite, Sonar for Practising Engineering, 3rd Edition, John Wiley & Sons, 2002.
  3. R. J. Urick, Principles of Underwter Sound, 3rd Edition, McGraw-Hill, 1983.
  4. A. Kummert, "Fuzzy technology implemented in sonar systems," IEEE Journal of Oceanic Engineering, vol. 18, no. 4, pp. 483-490, 1993. https://doi.org/10.1109/48.262298
  5. L. Sichum and Y. Desen, "DEMON Feature Extraction of Acoustic Vector Signal based on 3/2-D Specturm," 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA'07), pp. 2239-2243, 2007.
  6. S. Badri and H. Amindavar, "Estimation of Propeller Shaft Rate in Multipath Environment using Nevanlinna-Pick Interpolation," 9th International Symposium on Signal Processing and Its Applications (ISSPA'07), pp. 1-4, 2007.
  7. A. D. Michael, "Signature Modeling for Acoustic Trainer Synthesis," IEEE Journal of Oceanic Engineering, vol. OE-12, no. 1, pp. 143-147, 1987.
  8. R. O. Nielsen, "Cramer-Rao Lower Bounds for Sonar Broad-band Modulation Parameters," IEEE Journal of Oceanic Engineering, vol. 24, no. 3, pp. 285-290, 1999. https://doi.org/10.1109/48.775290
  9. S. R. Silva, Advances in Sonar Technology, I-Tech Education and Publishing, 1 Feb. 2009.
  10. W. A. Struzinski and E. D. Lowe, "The Effect of Improper Normalization on the Performance of an Automated Energy Detector," Journal of Acoustics Society of America, vol. 78, no. 3, pp. 936-941, 1985. https://doi.org/10.1121/1.392925

Cited by

  1. The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model vol.25, pp.3, 2016, https://doi.org/10.9709/JKSS.2016.25.3.015