• Title/Summary/Keyword: Entropy M

Search Result 193, Processing Time 0.029 seconds

Studies on the Measurement of Thermal Diffusivity and Thermophysical Characteristics of Defatted and Nondefatted Starches (전분의 열확산율 측정 및 물리적 특성에 관한 연구)

  • Kim, Min-Yong;Kong, Jai-Yul;Kim, Jeong-Han;Cheong, Jin-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The thermal diffusivity of defatted and nondefatted starches were measured on the basis of one dimensional semi-infinitive theory. Differential scanning calorymetry was used to study the effects of cooling rate, fat and water contents on the enthalpy and entropy changes with the cooling rate of $-2.5{\sim}10^{\circ}C/min$. Thermal diffusivity of defatted and nondefatted straches were determined to be $4.14{\times}10^{-4}{\sim}4.96{\times}10^{-4}(m^2/h),\;4.09{\times}10^{-4}{\sim}4.81{\times}10^{-4}(m^2/h)$ in unfrozen state, and $2.78{\times}10^{-3}{\sim}3.91{\times}10^{-3}(m^2/h),\;2.26{\times}10^{-3}{\sim}3.57{\times}1-^{-3}(m^2/h)$ in frozen state respectively. On decreasing temperatures in frozen state, thermal diffusivities of starches were increased and entropy and enthalpy were decreased, and more rapid cooling rates resulted in a decrease in entropy. A linear relation was observed between enthropy, enthaly and water content. Thermal diffusivity was decreased, and entropy was increasing fat content. With water content ranging from 35 to 90%, enthalpy and entropy of straches were found to be $107{\sim}216 (kcal /moi),\;0.45{\sim}0.94(kcal/mol.\;K)$, respectively.

  • PDF

Security Analysis based on Differential Entropy m 3D Model Hashing (3D 모델 해싱의 미분 엔트로피 기반 보안성 분석)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.995-1003
    • /
    • 2010
  • The content-based hashing for authentication and copy protection of image, video and 3D model has to satisfy the robustness and the security. For the security analysis of the hash value, the modelling method based on differential entropy had been presented. But this modelling can be only applied to the image hashing. This paper presents the modelling for the security analysis of the hash feature value in 3D model hashing based on differential entropy. The proposed security analysis modeling design the feature extracting methods of two types and then analyze the security of two feature values by using differential entropy modelling. In our experiment, we evaluated the security of feature extracting methods of two types and discussed about the trade-off relation of the security and the robustness of hash value.

Accuracy Assessment of Ground Information Extracting Method from LiDAR Data (LiDAR자료의 지면정보 추출기법의 정확도 평가)

  • Choi, Yun-Woong;Choi, Nei-In;Lee, Joon-Whoan;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.19-26
    • /
    • 2006
  • This study assessed the accuracies of the ground information extracting methods from the LiDAR data. Especially, it compared two kinds of method, one of them is using directly the raw LiDAR data which is point type vector data and the other is using changed data to DSM type as the normal grid type. The methods using Local Maxima and Entropy methods are applied as a former case, and for the other case, this study applies the method using edge detection with filtering and the generated reference surface by the mean filtering. Then, the accuracy assessment are performed with these results, DEM constructed manually and the error permitted limit in scale of digital map. As a results, each DEM mean errors of methods using edge detection with filtering, reference surface, Local Maxima and Entropy are 0.27m, 2.43m, 0.13m and 0.10m respectively. Hence, the method using entropy presented the highest accuracy. And an accuracy from a method directly using the raw LiDAR data has higher accuracy than the method using changed data to DSM type relatively.

  • PDF

A Study on the Surface Asperities Assessment by Fractal Analysis (프랙탈 해석을 이용한 표면 미세형상 평가 기법에 관한 연구)

  • 조남규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.7-14
    • /
    • 1998
  • In this paper, Fractal analysis applied to evaluate machined surface profile. The spectrum method was used to calculate fractal dimension of generated surface profiles by Weierstrass-Mandelbrot fractal function. To avoid estimation errors by low frequency characteristics of FFT, the Maximum Entropy Method (MEM) was examined. We suggest a new criterion to define the MEM order m. MEM power spectrum with our criterion is proved to be advantageous by the comparison with the experimental results.

  • PDF

A Study on Maximum and Mean Velocity Relationships with Varied Channel Slopes and Sediment (유사가 있는 경우와 수로경사가 변화하는 경우의 최대유속과 평균유속과의 관계에 관한 연구)

  • Choo, Tai-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.154-159
    • /
    • 2008
  • This study proposes how to decide mean velocity which is one of the very important and efficient discharge measurement in water resources area. In order to achieve this goal, Chiu's velocity distribution equation recently developed from the probability and entropy concepts is used to establish, analyze and compare a linkage between the mean velocity obtained from the Manning's equation which is well known in the world. Besides, it becomes clear that a channel cross section also has a propensity to establish and maintain an equilibrium state that can be measured and classified by a function of entropy M, ratio of mean and maximum velocities irrespective of including sediment or varied channel slope. Therefore, The linkage to be established in this study can be used to compute the cross sectional velocity distribution with the maximum velocity.

A study on monitoring of fatigue using the $2^{nd}$ order maximum entropy method ($2^{nd}$ order maximum entropy method를 이용한 근피로도의 측정에 관한 연구)

  • Cho, S.J.;Kim, M.S.;Lee, K.W.;Kim, K.G.;Kim, S.L.;Park, H.S.;Lee, K.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.47-50
    • /
    • 1990
  • In this study, the degree of spectral transfer to lower frequency caused by accumulation of Latic acid inside the muscle is estimated the convintional dip analysis, zero-crossing method and FFT method have intrinsic errors and estimation problems in case of severe noise. The new spectral analysis method using "$2^{nd}$ order Maximum Entropy Method" was applied to estimate mean frequency and we confirmed that this new method yields fast and reliable estimation over the FFT method.

  • PDF

Calculation of the Thermodynamic Properties of R-134a and A Preliminary Study of the Refrigeration Performance (R-134a의 열역학적 물성치 계산과 냉동 성능에 관한 연구)

  • Park, Y.M.;Lee, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-296
    • /
    • 1991
  • The thermodynamic properties of R134a, the prospective R12 alternative, have been computerized using Martin-Hou equation of state and the coefficients given by Willson-Basu. Several experimental results in literatures for PVT data, saturated vapor pressure, saturated liquid density are compared with the calculated results to investigate the accuracy. The average deviation (max. deviation) is 0.13% (0.25%) for saturated liquid density, 0.25% (0.8%) for PVT data. Thermodynamic properties, enthalpy, entropy are compared with the NIST's. The maximum percent difference is 3% for saturated liquid enthalpy, 1.5% for saturated vapor enthalpy, 4% saturated liquid entropy, and 0.7% for saturated vapor entropy. Correction of W-B's coefficients and inclusion of the sixth term of M-H EOS for improvement of accuracy are recommended. R134a and R12 are compared with respect to refrigeration performance. COP's are different from each other within 3%. Refrigeration effect of R134a is superior to that of R12 but refrigeration capacity of R134a is inferior to that of R12 because the volumetric efficiency of the system using R134a is lower than that of the system using R12.

  • PDF

SAMPLE ENTROPY IN ESTIMATING THE BOX-COX TRANSFORMATION

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.103-125
    • /
    • 2001
  • The Box-Cox transformation is a well known family of power transformation that brings a set of data into agreement with the normality assumption of the residuals and hence the response variable of a postulated model in regression analysis. This paper proposes a new method for estimating the Box-Cox transformation using maximization of the Sample Entropy statistic which forces the data to get closer to normal as much as possible. A comparative study of the proposed procedure with the maximum likelihood procedure, the procedure via artificial regression estimation, and the recently introduced maximization of the Shapiro-Francia W' statistic procedure is given. In addition, we generate a table for the optimal spacings parameter in computing the Sample Entropy statistic.

  • PDF

Semantic Segmentation using Iterative Over-Segmentation and Minimum Entropy Clustering with Automatic Window Size (자동 윈도우 크기 결정 기법을 적용한 Minimum Entropy Clustering과 Iterative Over-Segmentation 기반 Semantic Segmentation)

  • Choi, Hyunguk;Song, Hyeon-Seung;Sohn, Hong-Gyoo;Jeon, Moongu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.826-829
    • /
    • 2014
  • 본 연구에서는 야외 지형 영상 및 항공 영상 등에 대하여 각각의 영역들의 속성을 분할 및 인식 하기 위해 minimum entropy clustering 기반의 군집화 기법과 over-segmentation을 반복 적용하여 군집화 하는 두 방법을 융합한 기법을 제안하였다. 이 기법들을 기반으로 각 군집의 대표 영역을 추출한 후에 학습 데이터를 기반으로 만들어진 텍스톤 사전과 학습 데이터 각각의 텍스톤 모델을 이용하여 텍스톤 히스토그램 매칭을 통해 매칭 포인트를 얻어내고 얻어낸 매칭 포인트를 기반으로 영역의 카테고리를 결정한다. 본 논문에서는 인터넷에서 얻은 일반 야외 영상들로부터 자체적으로 제작한 지형 데이터 셋을 통해 제안한 기법의 우수성을 검증하였으며, 본 실험에서는 영역을 토양, 수풀 그리고 물 지형으로 하여 영상내의 영역을 분류 및 인식하였다.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.