• 제목/요약/키워드: Entrainment Ratio

검색결과 79건 처리시간 0.024초

운전조건 및 노즐위치에 따른 이젝터 성능특성에 관한 실험적 연구 (Experimental Analysis on the Performance Characteristics of an Ejector according to Inlet Pressure and Nozzle Position)

  • 이재준;전용석;김선재;김용찬
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.263-268
    • /
    • 2015
  • In this study, the performance of an ejector in the refrigeration cycle was experimentally studied using R600a. The performance of the ejector is analyzed according to the inlet pressure and nozzle position. The increase in the primary nozzle pressure decreased the pressure difference across the ejector. In the low entrainment region, the increased suction flow pressure led to an increase in the pressure difference. In the high entrainment region, the pressure difference was inversely proportional to the suction pressure. The effects of nozzle position ($L_n$) were also analyzed and for $L_n<0$, the decreased suction chamber volume led to a large pressure drop with the small increase in the suction mass flow rate. For $L_n>0$, the increased $L_n$ disturbed the primary nozzle flow and thus an increase in the primary nozzle flow increased the pressure lifting effect. In contrast, the increased suction mass flow rate decreased the pressure difference. When the nozzle outlet was located at the mixing part entrance ($L_n=0$), the ejector showed the highest pressure lifting effect.

Flow and Heat Transfer Measurements of Film Injectant from a Row of Holes with Compound Angle Orientations

  • Bumsoo Han;Sohn, Dong-Kee;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1137-1146
    • /
    • 2002
  • An experiment has been conducted on the flow and heat transfer characteristics of film coolant injected from a row of five holes with compound angle orientations of 35$^{\circ}$ inclination angle and 45$^{\circ}$ orientation angle. The Reynolds number based on the mainstream velocity and injection hole diameter 3.58${\times}$10$^4$. Three-dimensional velocity, film cooling effectiveness and heat transfer coefficient data are presented at three different mass flux ratios of 0.5, 1.0 and 2.0. Flow entrainment has been found between the vortices generated by adjacent injectants. The injectant with compound angle orientation entrains not only the mainstream boundary layer flow but also the adjacent injectant. Because of the flow entrainment, the injectant. With compound angle orientation is characterized by a single vortex while two bound vortices are usually observed in the case of simple angle injection. The strength of the secondary flow depends strongly on the mass flux ratio, which shows significant influence on the film cooling effectiveness and heat transfer coefficient.

75kW급 연료전지 시스템의 이젝터 설계 및 시험 (The Design and Test of Ejectors for a 75-kW Fuel Cell System)

  • 김범주;김도형;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.678-685
    • /
    • 2011
  • An Ejector enhances system efficiency, are easily operated, have a mechanically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 75-kW Molten Carbonate Fuel Cell (MCFC) system at KEPCO Research Institute. In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In the first place, a few sample ejectors were manufacured and the entrainment ratio was measured at a dummy stack. Through this experiment, the optimum ejector was chosen. The 75-kW MCFC system equipped with this optimum ejector was operated successfully.

5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험 (The Ejector Design and Test for 5kW MCFC System)

  • 김범주;김도형;이정현;이성윤;김진열;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제20권1호
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.

Experimental Study Of Supersonic Coanda Jet

  • Kim, Heuydong;Chaemin Im;Sunhoon, Woo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1999년도 제13회 학술강연논문집
    • /
    • pp.33-33
    • /
    • 1999
  • The Coanda effect is the tendency for a fluid jet to atach itself to an adjacent surface and follow its contour without causing an appreciable flow separation. The jet is pulled onto the surface by the low pressure region which develops as entrainment pumps fluid from the region between the jet and the surface. Then the jet is held to the wall surface by the resulting radial pressure gradient which balance the inertial resistance of the jet to turning. The jet may attach to the surface and may be deflected through more than 180 dog, when the radius of the Coanda surface is sufficiently large compared to the height of the exhaust nozzle. However, if the radius of curvature is small, the jet turns through a smaller angle, or may not attach to the surface at all. In general, the limitations in size and weight of a device will limit the radius of the deflection surface. Thus much effort has been paid to improve the jet deflection in a variety of engineering fields. The Coanda effect has long been applied to improve aerodynamic characteristics, such as the drag/lift ratio of flight body, the engine exhaust plume thrust vectoring, and the aerofoil/wing circulation control. During the energy crisis of the seventies, the Coanda jet was applied to reduce vehicle drag and led to drag reductions of as much as about 30% for a trailer configuration. Recently a variety of industrial applications are exploiting another characteristics of the Coanda jets, mainly the enhanced turbulence levels and entrainment compared with conventional jet flows. Various industrial burners and combustors are based upon this principle. If the curvature of the Coanda surface is too great or the operating pressure too high, the jet flow will break away completely from the surface. This could have catastrophic consequences for a burner or combustor. Detailed understanding of the Coanda jet flow is essential to refine the design to maximize the enhanced entrainment in these applications.

  • PDF

주기적으로 회전진동하는 원주 후류의 Dynamic PIV 속도장 측정 (Dynamic PIV Measurements of Wake behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.134-137
    • /
    • 2007
  • The temporal evolution of wake behind a circular cylinder oscillating rotationally with a relatively high forcing frequency has been investigated experimentally using a dynamic PIV technique. Experiments were carried out with varying the frequency ratio $F_R\;(=f_f/f_n)$ in the range from 0.0 (stationary) to 1.6 at oscillation amplitude of ${\theta}_A=30^{\circ}$ and Reynolds number of $Re=4.14{\times}10^3$. Depending on the forcing condition ($F_R$), the flow was divided into three regimes; non-lock-on ($F_R=0.4$), transition ($F_R=0.8$, 1.6) and lock-on regimes ($F_R=1.0$) with markedly different flow structure in the near-wake region behind the cylinder. When the frequency ratio was less than 1.0 ($F_R{\le}1.0$), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. However, the flow characteristics changed markedly beyond the lock-on flow regime ($F_R=1.0$) due to high-frequency forcing. At $F_R=1.6$, the mutual interactions between the vortices shed from both sides of the cylinder were not so strong. Thereby, the flow entrainment and momentum transfer into the wake center region were reduced. In addition, the size of the large-scale vortices decreased since the lateral extent of the wake was suppressed.

  • PDF

폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구 (An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand)

  • 윤경구;이주형;홍창우;박제선
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.153-161
    • /
    • 1998
  • 콘크리트 구조물은 자연적인 혹은 인위적인 온도의 승, 강하로 인하여 동결-융해 작용을 받게 되어 구조물의 성능저하를 야기시킨다. 현대에 들어서면서 콘크리트의 내구특성을 파악하기 위한 연구적 요구가 증가되고 있다. 따라서 폐주물사 콘크리트를 실제 구조물에 적용하기 위해서는 내구특성에 대한 연구가 반드시 이루어져야 한다. 폐주물사를 혼입한 콘크리트의 내구특성을 파악하기 위한 동결-융해 실험은 폐주물사의 잔골재 치환율, 물-시멘트비, AE제 사용 여부를 주요 변수로 하여 실시하였다. 원형공시체를 제작하여, 동결-융해 시험기에 넣어 -18~4$^{\circ}C$로 급속 동결-융해를 진행시키면서 매 23싸이클마다 동탄성계수를 측정하였다. 실험결과 AE제를 첨가했을 때 물-시멘트비가 적을수록, 폐주물사의 치환율이 클수록 전반적으로 강도가 증가하는 것으로 나타났으며, 물-시멘트비가 증가함에 따라, AE제를 사용한 콘크리트가 동결-융해 저항성이 증가하는 것으로 나타났다. 특히 폐주물사 치환율이 50%일때가 동결-융해 저항성이 가장 좋은 것으로 나타났으며 그 다음으로 25, 0% 순으로 저항성이 좋은 것으로 나타났다. 따라서 폐주물사 콘크리트가 내구성이 우수한 것으로 나타나 폐주물사를 콘크리트에 재활용할 수 있는것으로나타났다.

산업부산물을 활용한 고유동화 초고강도 콘크리트의 기초물성 및 동결융해특성 (A Fundamental Study on Very High Strength and High Flowable Concrete using Industrial By-products)

  • 김병권;이석홍;정하선;이영남;문한영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.707-714
    • /
    • 2001
  • This paper presents the fundamental study on rational manu(acture of Very High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the VHS concrete(target compressive strength : over 1,000 kgf/$cm^{2}$) which is easily workable (target slump flow : 60$\pm$l0cm), The main variables studied are; 1) test variables to find the optimum replacement ratio of mineral admixture, 2) test variables to find a rational water-binder ratio, a proper binder content, 3) test variables to find the method for reduction of slump loss, 4) test variables to know the influence of air entrainment on frost resistance. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume, and water reducing agent(slump loss reduction type). We found that it is unnecessary to entrain air for freeze-thawing resistance.

  • PDF

이차목을 갖는 환형 분사 초음속 이젝터 이론 해석 (Theoretical Analysis of an Annular Injection Supersonic Ejector Equipped with a Second-Throat)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1285-1290
    • /
    • 2005
  • A theoretical analysis of an annular injection supersonic ejector equipped with a second-throat was developed under the assumption that the secondary flow is choked aerodynamically by interaction with primary flow in the mixing chamber. The predicted secondary flow pressure agrees reasonably well with the measurements. Using the analysis, the compression ratio, the secondary flow Mach number, and the location of the choking point were presented in terms of entrainment ratio.

운동부하가 움직임-호흡 결합에 미치는 영향 (Effect of the Exercise Load on the Locomotor-Respiratory Coupling)

  • 남궁영;박은영;박호준
    • 한국전문물리치료학회지
    • /
    • 제5권3호
    • /
    • pp.56-62
    • /
    • 1998
  • The nature of entrainment between the locomotor and the respiratory rhythm was investigated while normal human subjects were walked or running on a treadmill. The purpose of this study was to analyze the incidence and type of coordination between the locomotor and the respiratory rhythm during running at different work load. The experiments were carried out on 12 untrained volunteers exercising at 3 work loads (2 METs, 3 METs, 4 METs in randomized order). The gait cycle was measured by electromyography (EMG) signal of gastrocnemius firing and the respiratory cycle was measured by a thermometer. We found that the ratio between the locomotor and the respiratory rhythm existed and 2:1 ratio between the locomotor-respiratory coupling was dominant at 2 METs and 3 METs.

  • PDF