Dynamic PIV Measurements of Wake behind a Rotationally Oscillating Circular Cylinder

주기적으로 회전진동하는 원주 후류의 Dynamic PIV 속도장 측정

  • 이정엽 (포항공과대학교 기계공학과 대학원) ;
  • 이상준 (포항공과대학교 기계공학과)
  • Published : 2007.11.30


The temporal evolution of wake behind a circular cylinder oscillating rotationally with a relatively high forcing frequency has been investigated experimentally using a dynamic PIV technique. Experiments were carried out with varying the frequency ratio $F_R\;(=f_f/f_n)$ in the range from 0.0 (stationary) to 1.6 at oscillation amplitude of ${\theta}_A=30^{\circ}$ and Reynolds number of $Re=4.14{\times}10^3$. Depending on the forcing condition ($F_R$), the flow was divided into three regimes; non-lock-on ($F_R=0.4$), transition ($F_R=0.8$, 1.6) and lock-on regimes ($F_R=1.0$) with markedly different flow structure in the near-wake region behind the cylinder. When the frequency ratio was less than 1.0 ($F_R{\le}1.0$), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. However, the flow characteristics changed markedly beyond the lock-on flow regime ($F_R=1.0$) due to high-frequency forcing. At $F_R=1.6$, the mutual interactions between the vortices shed from both sides of the cylinder were not so strong. Thereby, the flow entrainment and momentum transfer into the wake center region were reduced. In addition, the size of the large-scale vortices decreased since the lateral extent of the wake was suppressed.