• Title/Summary/Keyword: Entrained-bed

Search Result 40, Processing Time 0.043 seconds

Operation Characteristics of Pilot-Scale Gasification System for Coal Syngas Production (석탄 합성가스 제조를 위한 pilot급 가스화 시스템 운전특성)

  • Chung, Seok-Woo;Jung, Woo-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.429-432
    • /
    • 2007
  • Gasification has been regarded as a very important technology to decrease environmental pollution and to obtain higher efficiency, The coal gasification process converts carbon containing coal into a syngas, composed primarily of CO and $H_2$. And the coal syngas can be used as a source for power generation or chemical material production. This paper illustrates the operation characteristics and results of pilot-scale coal syngas production facilities. The entrained-bed pilot scale coal gasifier was operated normally in the temperature range of $1,300{\sim}1,400^{\cdot}C$, $2{\sim}3kg/cm^2$ pressure. And Indonesian KPC coal produced syngas that has a composition of $46{\sim}54$% CO, $20{\sim}26$% $H_2$, and $5{\sim}8$% $CO_2$.

  • PDF

Attrition Characteristics of Catalysts for a High Efficiency Water Gas Shift Process (고효율 수성가스 공정을 위한 촉매 마모 특성)

  • Jo, Jun Beom;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.111-114
    • /
    • 2010
  • In the attrition reactor for the American Society for Testing and Materials (ASTM) D5757-95, the attrition characteristics of catalysts for water gas shift reaction were investigated. The effects of attrition characteristics of low temperature shift catalysts (LTS) and high temperature shift catalysts (HTS) on fluidization phenomena and average particle size were investigated and compared with the attrition characteristics of sand particles. The particle size of catalysts was decreased and particle size distribution in attrition tube was changed due to the effect of gas injection. About 40~50 wt% samples of original catalyst particles were entrained and lost. The amount of fly ash of LTS catalyst was less than that of HTS. Also, the weight of entrained particles which had original particle size of $212{\sim}300{\mu}m$ was lower than any other cases.

A study on the coal gasification modeling in an Entrained Flow Gasifier (분류층 반응기에서의 석탄가스화 모델링 연구)

  • Ju, Jisun;Chi, Junhwa;Chung, Jaehwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 석탄가스화기술은 매장량이 풍부하여 안정적인 공급이 보장되는 석탄을 이용함과 동시에 환경오염물질 감소라는 사회적 요구조건을 충족시키면서 화학제품, 석탄-가스화, 석탄-디젤화, 연료전지, 복합발전 등 다양한 분야에 응용이 가능한 장점이 있다. 특히 석탄가스화복합기술(Intergrated Coal Gasification Combined Cycle, IGCC)은 석탄을 고온, 고압하에서 가스화시켜 일산화탄소(CO), 수소($H_2$)가 주성분인 합성가스를 제조, 정제 후 가스터빈 및 증기터빈을 복합으로 구동하여 전기를 생산하는 친환경 차세대 발전기술로 주목을 받고 있다. 현재 IGCC 기술은 세계적으로 볼 때 상용화단계에 있고, 우리나라의 경우 한국형 IGCC 기술의 확보를 위한 연구사업이 진행중에 있다. 본 연구는 IGCC 발전플랜트의 발전효율을 결정하는 가장 중요한 부분이라 할 수 있는 가스화반응기의 모델링 기술을 개발하는 목적으로 진행되었다. 본 연구에서는 석탄가스화 반응기에서 발생하는 석탄의 휘발화와 Char의 표면반응 그리고 기상에서의 가스화반응등의 현상을 전산유체역학(Computational Fluid Dynamics)을 이용하여 모델링하는 방법론이 연구되었다. 해석을 위한 형상은 해석에 소요되는 시간을 줄이고, 형상이 해석결과에 미치는 영향을 줄이고자 2차원으로 구성하였다. 해석을 위한 수학적모델으로는 난류모델, 가스화반응모델, Lagrangian particle tracking, Char reaction 등을 포함하였고, 해석을 위한 Solver는 Fluent를 이용하였다. 모델링결과에 의해 예측되는 합성가스의 조성을 상용급 IGCC 가스화기의 운전결과와 비교해 본 결과 본 연구에서 설정한 모델로 예측되는 온도 및 가스농도가 실험치와 유사하게 나타남을 알 수 있었고 이를 통하여 본 연구에서 설정한 모델링방법이 적절함을 알 수 있었다.

  • PDF

Computational Investigation on in a Entrained-bed Coal Gasifier (분류층 석탄 가스화 전산 고찰)

  • 조석연;서경원
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.7-16
    • /
    • 1998
  • Numerical computations were performed for the gasification of five different coals such as Lewis-Stockton bituminous, Utah bituminous. Illinois #6 bituminous, Usibelli sub-bituminous and Beulah-Zap lignite, to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow fields within an axisymmetric, entrained-flow gasifier. The concentrations of major products, CO and $H_2$, were calculated with varying oxygen to coal ratio(0.7~1.4) and steam to coal ratio. To verify the validity of predictions, the predicted and the measured values of CO and $H_2$ concentrations at the exit of the gasifier were compared for Roto coal. Reasonable agreement was obtained between the predicted and measured values. Predictions showed that the (CO+H_2$) concentration increased gradually to its maximum value with increasing oxygen-coal ratio, and CO concentration decreased, but $H_2$ concentration increased to some extent with increasing steam-coal ratio. When the oxygen-coal ratio was between 1.0 and 1.2, and the steam-coal ratio was between 0.3 and 0.4, high values of the cold-gas efficiency were obtained.

  • PDF

Technical Review of Coal Gasifiers for Production of Synthetic Natural Gas (합성천연가스(SNG) 생산을 위한 석탄가스화기 기술성 검토)

  • Lee, Geun-Woo;Shin, Yong-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.865-871
    • /
    • 2012
  • Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed-bed slagging gasifier, wet-type entrained gasifier, and dry-type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Syngas Concentration and Efficiency in Heavy Residual Oil Gasification with 1 Ton/Day-Class Entrained-Bed Reactor (1톤/일급 분류층 가스화기에서 중질잔사유의 가스화 합성가스 조성 및 효율 변화)

  • 주지선;나혜령;윤용승
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • With the 1 ton/day-class entrained-bed gasification system, heavy residual oil from local refinery was gasified at the operating conditions of 1,000~1,20$0^{\circ}C$ and 3 $kg_f$/$\textrm{cm}^2$ in order to determine the variation of syngas composition, carbon conversion, and cold gas efficiency. Produced syngas consists of mainly CO, H$_2$, $CO_2$, and the methane concentrations. Results yielded a maximum syngas composition of 45% H$_2$ and 26%, CO at the 31 kg/hr feeding condition. The maximum carbon conversion and cold gas efficiency were 87% and 68%, respectively at the feeding conditions of 20 kg/hr and oxygen/feed ratio of 1.2. When oxygen feeding amount that is one of the most important operating parameter in gasification was increased, concentration of hydrogen in the syngas is greatly increased comparing to the concentration of CO and $CO_2$. The temperature exhibited about 11$0^{\circ}C$ raise while oxygen/feed ratio changed from 0.6 to 1.2. Methane concentration showed enhanced dropping rate with increase in gasifier temperature and the useful relationship between the gasifier temperature and methane concentration existed such that it can be employed as an indirect measure of inside gasifier temperature.

Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver (태양열 유동층 흡열기의 기체 열흡수 특성)

  • Park, Sae Han;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Characteristics of hydrodynamics and heat absorption by gas in a directly-irradiated fluidized bed particle receiver (50 mm-ID X 150 mm high) of SiC particles have been determined. Solid holdups of SiC particles show almost constant values with increasing gas velocity. Fine SiC particles (SiC II; dp=52 ㎛, ρs=2992 kg/㎥) showed low values of relative standard deviation of pressure drop across bed but high solids holdups in the freeboard region compared to coarse SiC particles (SiC I; dp=123 ㎛, ρs=3015 kg/㎥). The SiC II exhibited higher values of temperature difference normalized by irradiance due to the effect of additional solar heat absorption and heat transfer to the gas by the particles entrained in the freeboard region in addition to the efficient thermal diffusion of the solar heat received at bed surface. Heat absorption rate and efficiency increased with increasing the gas velocity and fluidization number. The SiC II showed maximum heat absorption rate of 17.8 W and thermal efficiency of 14.8%, which are about 33% higher than those of SiC I within the experimental gas velocity range.

A numerical analysis of sediment transport in an estuary (河口隣接 內 의 堆積物 輸送에 대한 數値모델 解釋)

  • 강시완;카알지
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • The transport and fate of fine-grained, cohesive sediments in an estuary were investigated numerically. A numerical model of sediment entrainment, deposition, and transport has been developed by incorporating recent results of laboratory and field investigations. The time-dependent flow fields produced by fiver inflow and semi-diurnal tides, were calculated, and the corresponding distributions of suspended-sediment concentrations were obtained. The time-changes of sediment bed condition due to entrainment and deposition were obtained. The entrained sediments contribute initially to high sediment concentrations in the estuary basin. As the time passes, the suspended-sediment concentrations were much reduced by the seaward transport due to residual currents. The erosional and dipositional areas were appeared to be strongly dependent on the current-velocity fields and sediment properties of the estuary.

  • PDF

Operation Characteristics of Coal Syngas Production and DME Conversion Facilities (석탄 합성가스 제조 및 화학원료(DME) 전환설비의 운전 특성)

  • Chung, Seok-Woo;Kim, Mun-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.83-86
    • /
    • 2006
  • In this study, the syngas producing facility that consists of pulverized coal feeding/gasification and hot gas clean-up system was tested for Indonesian subbituminous coal. And the DME conversion facilities have been developed and tested for converting syngas to DME by reactions with catalysts. So, the entrained-bed slagging type pi lot scale coal gasifier was operated normally in the temperature range of $1,400{\sim}1,450^{\circ}C,\;7{\sim}8kg/cm^2$ pressure. And Roto middle coal produced syngas that has a composition of $36{\sim}38%$ CO, $14{\sim}16%\;H_2,\;and\;5{\sim}8%\;CO_2$. Particulates in syngas were 99.8% removed by metal filters. $H_2S$ composition in syngas was also desulfurized by the Fe chelate system to yield less than 0.1 ppm level. When the clean syngas $70{\sim}100 Nm^3/h$ was provided to DME conversion rector, normally operated in the temperature range of $230{\sim}250^{\circ}C$ and $60kg/cm^2$ pressure, 4.5% DME was yielded.

  • PDF