고온고압에서 운전되는 분류층 석탄가스화기에서 석탄의 회성분을 용융슬래그로 원활하게 배출하는 것은 석탄가스화기의 안정적인 운전을 위하여 매우 중요하다. 본 연구에서는 분류층 석탄가스화기에서 원활한 슬래그의 배출조건을 파악하기 위해서 여러 슬래그 점도예측 모델들을 사용하여 가스화기의 운전온도 변화에 따른 슬래그의 점도변화를 해석하여 점도해석모델들의 적용성을 비교분석하였다. 본 연구에서 선정한 가스화기 설계탄의 회 성분을 토대로 슬래그의 점도를 계산한 결과 점도해석 모델별로 온도에 대한 점도 값이 매우 상이하게 예측되었다. 또한 설계탄에 대한 점도예측 모델들을 적용한 계산결과로부터 슬래그의 점도가 80 poise가 되는 온도인 $T_{80}$이 매우 높은 값으로 예측되었다. 따라서 가스화기의 운전온도에서 용융 슬래그를 원활하게 배출하기 위해서 설계탄에 Flux를 첨가하여 슬래그의 점도를 낮추어 줄 필요가 있음을 알았다. 기존의 점도예측 모델들 중에 점도 예측 값이 중간치 정도의 경향을 보이는 Hoy가 개발한 모델을 기준으로 가스화기의 적정 운전온도에서 Flux로 첨가할 석회석 양을 산출하였다. 본 슬래그 점도모델들의 적용 결과로부터 실제 가스화기의 운전이나 설계에 슬래그의 특성을 파악하여 운전조건 도출이나 해석에 활용하기 위해서는 운전예정인 탄종에 대한 점도측정 실험을 병행하여 적정한 점도 예측모델을 선정하는 것이 중요함을 알 수 있었다.
고온고압에서 운전되는 IGCC용 분류층 석탄가스화기는 석탄에 포함된 회 성분을 대부분 용융 슬래그 형태로 가스화기 벽을 타고 흘러내리게 하여 가스화기 하부로 배출시킨다. 이러한 용융 슬래그를 원활하게 배출시키는 것은 가스화기의 안정적인 운전에 있어서 매우 중요하다. 본 연구에서는 슬래그 층 내의 물질수지, 운동량 및 에너지 보존을 고려하여 석탄가스화기내의 슬래그 거동을 해석할 수 있는 모델 식을 유도하였다. 유도된 슬래그 거동 모델 식들을 적용하고 가스화기의 형상을 고려하여 가스화기 내부에서의 슬래그 거동을 해석하였다. 또한 슬래그 물성치들인 슬래그 점도, 슬래그 비열, 슬래그 밀도, 슬래그 열전달 계수 등을 슬래그의 조성 변화에 따라 별도로 산정하여 슬래그 해석의 입력 데이터로 사용하였다. 슬래그에 첨가되는 석회석의 비율을 해석의 주요 변수로 사용하여 가스화기 하부에서 용융 슬래그 및 고체 슬래그 두께, 용융 슬래그 층 내부에서의 슬래그 점도분포 및 슬래그 속도분포 등 슬래그 거동의 주요 특성들을 예측하였다. 해석결과로 석탄에 석회석의 첨가량을 증가시키면 슬래그의 임계점도온도(temperature of critical viscosity)와 점도가 낮아지므로 가스화기 벽면에서의 용융 슬래그의 유동속도는 빨라지며, 고체 슬래그와 용융 슬래그의 두께가 감소하는 것을 정량적으로 확인할 수 있었다.
Numerical computations were performed for the gasification of five different coals such as Lewis-Stockton bituminous, Utah bituminous. Illinois #6 bituminous, Usibelli sub-bituminous and Beulah-Zap lignite, to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow fields within an axisymmetric, entrained-flow gasifier. The concentrations of major products, CO and $H_2$, were calculated with varying oxygen to coal ratio(0.7~1.4) and steam to coal ratio. To verify the validity of predictions, the predicted and the measured values of CO and $H_2$ concentrations at the exit of the gasifier were compared for Roto coal. Reasonable agreement was obtained between the predicted and measured values. Predictions showed that the (CO+H_2$) concentration increased gradually to its maximum value with increasing oxygen-coal ratio, and CO concentration decreased, but $H_2$ concentration increased to some extent with increasing steam-coal ratio. When the oxygen-coal ratio was between 1.0 and 1.2, and the steam-coal ratio was between 0.3 and 0.4, high values of the cold-gas efficiency were obtained.
Recently, gasification technology for coal blended with biomass has been an issue. Especially, An advantages of coal blended with biomass are 1) obtaining high cold gas efficiency, 2) obtaining syn-gas of high-high heating value (HHV), and 3) controlling occurrence of $CO_2$. In this study, the efficiency and characteristic of 300 MW Shell type gasifier were predicted using CFD simulation. The CFD simulation was performed for biomass coal blending ratios of 0~0.2, 0.5, 1 and $O_2$/fuel ratios of 0.5~0.84. Kinetic parameters (A, $E_a$) obtained by $CO_2$ gasification experiment were used as inputs for the simulation. In results of CFD simulation, residence times of particle in 300MW Shell type gasifer presented as 7.39 sec ~ 13.65 sec. Temperature of exit increased with $O_2$/fuel ratio as 1400 K ~ 2800 K, while there is not an effects of biomass coal blending ratios. Considering both aspects of temperature for causing wall slagging and high cold gas efficiency, the optimal $O_2$/fuel ratio and blending ratio were found to be 0.585 and 0.05, respectively.
Mathematical models for char-slag interaction and near-wall particle segregation developed by Montagnaro et. al. were applied to predict various aspects of coal gasification in an up-flow entrained gasifier of commercial scale. For this purpose, some computer simulations were performed using gPROMS as the numerical solver. Typical design parameters and operating conditions of the commercial gasifiers were used as input values for the simulation. Development of a densely dispersed phase of solid carbon was found to have a critical effect on both carbon conversion and ash flow behavior. In general, such a slow-moving phase was turned out to enhance carbon conversion by lengthening the residence time of char or soot particles. Furthermore, it was also found that guiding the transfer of char or soot into the closer part of the wall to coal burner is favorable in terms of gasification efficiency and vitrified ash collection. Finally, to a certain degree densely dispersed phase of carbon showed an yield-enhancing effect of syngas.
Kim, Mi-Yeong;Joo, Yong-Jin;Choi, In-Kyu;Lee, Joong-Won
Journal of Hydrogen and New Energy
/
v.21
no.5
/
pp.460-469
/
2010
To develop coal gasfication system, many studies have been actively conducted to describe the simulation of steady state. Now, it is necessary to study the gasification system not only in steady state but also in dynamic state to elucidate abnormal condition such as start-up, shut-down, disturbance, and develop control logic. In this study, a model was proposed with process simulation in dynamic state being conducted using a chemical process simulation tool, where a heat and mass transfer model in the gasifier is incorporated, The proposed model was verified by comparison of the results of the simulation with those available from NETL (National Energy Technology Laboratory) report under steady state condition. The simulation results were that the coal gas efficiency was 80.7%, gas thermal efficiency was 95.4%, which indicated the error was under 1 %. Also, the compositions of syngas were similar to those of the NETL report. Controlled variables of the proposed model was verified by increasing oxygen flow rate to gasifier in order to validate the dynamic state of the system. As a result, trends of major process variables were resonable when oxygen flow rate increased by 5% from the steady state value. Coal flow rate to gasifier and quench gas flow rate were increased, and flow rate of liquid slag was also increased. The proposed model in this study is able to be used for the prediction of gasification of various coals and dynamic analysis of coal gasification.
석탄 가스화기술은 기존의 연소 방식에서 발생하는 공해 물질은 줄이면서 발생되어지는 합성가스를 이용하여 직접 사용하거나, IGCC나 CTL 공정등에서 원료로서 사용할 수 있다는 장점을 가지고 있어 석탄의 환경친화적인 이용을 위하여 오래전에 개발된 기술임에도 불구하고 최근 각광받고 있는 기술이다. 분류층 가스화기는 미분화된 석탄을 고온에서 가스화하는 방식으로 용량의 대형화가 가능하여 석탄가스화복합발전(IGCC)용으로 이용되고 있다. 석탄슬러리를 원료로 사용하는 습식 분류층 가스화기는 기술적으로 상당히 안정적이어서 가장 많이 보급되어진 가스화기 형태이다. 본 연구에서는 1.0T/D급 습식 분류상 가스화 장치의 가압 운전 특성 및 가스화 특성, 운전 조건을 파악하기 위하여 실험을 실시하였다. 실험에 사용된 반응기는 운전 압력 30bar로 설계되었으며, Fuel의 공급량은 50~70kg/hr로 공급하였으며, $O_2$/fuel Ratio를 0.7~1.1까지 변경하여 Fuel 주입량에 따른 내부온도 분포와 $O_2$/Fuel 비율에 따른 합성가스의 조성, 탄소 전환율, 냉가스효율 변화 특성을 알아보았다.
최근 석탄 가스화 기술은 화석연료인 석탄을 기존의 공해물질 발생을 90%이상 줄이면서 고효율로 활용할 수 있는 방법으로 각광받고 있다. 본 연구는 당 센터에서 보유하고 있는 습식 석탄 가스화기의 성능 향상을 위하여 버너의 형태에 따른 미립화 특성을 파악하였으며, 가스화기의 버너로 적용하여 가스화 특성 실험을 실시하였다. 미립화 특성을 파악하기 위하여 개발되어진 3가지 형태의 버너를 Cold Test장치를 이용하여 $O_2$/Fuel Ratio 및 버너의 내부 혼합 방식, 분사각도에 따른 미립화 특성을 관찰하였으며, 입도 분석은 심파텍사의 입도 분석기를 이용하여 측정하였다. 실험 결과 이중혼합식 버너가 미립화 특성이 가장 우수하게 나타났으며, 외부혼합식 버너와 환형 버너의 경우 비슷한 미립화 특성을 나타내었다. 가스화기에 적용하여 실험한 결과 미립화 특성이 우수하게 나타나는 경우 가스화 특성 또한 우수하게 나타남을 확인하였다.
Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
Journal of Korean Society of Environmental Engineers
/
v.32
no.2
/
pp.165-174
/
2010
The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.
석탄가스화기술은 매장량이 풍부하여 안정적인 공급이 보장되는 석탄을 이용함과 동시에 환경오염물질 감소라는 사회적 요구조건을 충족시키면서 화학제품, 석탄-가스화, 석탄-디젤화, 연료전지, 복합발전 등 다양한 분야에 응용이 가능한 장점이 있다. 특히 석탄가스화복합기술(Intergrated Coal Gasification Combined Cycle, IGCC)은 석탄을 고온, 고압하에서 가스화시켜 일산화탄소(CO), 수소($H_2$)가 주성분인 합성가스를 제조, 정제 후 가스터빈 및 증기터빈을 복합으로 구동하여 전기를 생산하는 친환경 차세대 발전기술로 주목을 받고 있다. 현재 IGCC 기술은 세계적으로 볼 때 상용화단계에 있고, 우리나라의 경우 한국형 IGCC 기술의 확보를 위한 연구사업이 진행중에 있다. 본 연구는 IGCC 발전플랜트의 발전효율을 결정하는 가장 중요한 부분이라 할 수 있는 가스화반응기의 모델링 기술을 개발하는 목적으로 진행되었다. 본 연구에서는 석탄가스화 반응기에서 발생하는 석탄의 휘발화와 Char의 표면반응 그리고 기상에서의 가스화반응등의 현상을 전산유체역학(Computational Fluid Dynamics)을 이용하여 모델링하는 방법론이 연구되었다. 해석을 위한 형상은 해석에 소요되는 시간을 줄이고, 형상이 해석결과에 미치는 영향을 줄이고자 2차원으로 구성하였다. 해석을 위한 수학적모델으로는 난류모델, 가스화반응모델, Lagrangian particle tracking, Char reaction 등을 포함하였고, 해석을 위한 Solver는 Fluent를 이용하였다. 모델링결과에 의해 예측되는 합성가스의 조성을 상용급 IGCC 가스화기의 운전결과와 비교해 본 결과 본 연구에서 설정한 모델로 예측되는 온도 및 가스농도가 실험치와 유사하게 나타남을 알 수 있었고 이를 통하여 본 연구에서 설정한 모델링방법이 적절함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.