• Title/Summary/Keyword: Entrained air

Search Result 119, Processing Time 0.023 seconds

Durability in Concrete Containing Limestone Powder and Slag Powder (석회석 미분말과 슬래그 미분말을 혼합한 콘크리트의 내구성)

  • 구봉근;이재범;이현석;박주원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.82-85
    • /
    • 2003
  • This study is to investigate durability in concrete containing slag powder and limestone power. The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect of slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. When concrete containing slag powder is mixing rate 40%, durability appeared the highest in general. When concrete containing limestone powder is mixing rate 10% in all experiments, the most suitable result appeared.

  • PDF

On the compressibility of bread dough

  • Wang, Chunguang;Dai, Shaocong;Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.127-131
    • /
    • 2006
  • Few investigations of bread dough compressibility have been reported in the literature, despite the fact that high compression stresses are often reached in processing. Here we report some experiments on the compressibility of an Australian wheat bread dough under compressive stresses up to 5 MPa, and show that the results are consistent with a mathematical model of bread dough containing entrained air. The implications for tensile testing are also considered.

Experimental Study on the Frost Deterioration Meterioration Mechanism of Concrete (콘크리트의 동해열화 메커니즘에 관한 실험적 연구)

  • 이승한;이순환;정해구;한형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.169-174
    • /
    • 1996
  • It have been announced that concrete subjected to freezing and thawing cause deterioration by expanded inside water and contracted at thawing. However, this study descrebe the deterioration mechanism of concrete by freezing and thawing test. Embeded strain gauges were used to measure the inside restrict strain due to the temperature differenct inside and outside the concrete test specimens. Test results showed that using the air entrained admixture and expanded poly-styrene was developed durability of concrete by decreasing inside retrict strain ratio.

  • PDF

Effects of Entrained Air on the Characteristics of a Small Screw-type Centrifugal Pump (공기 흡입이 소형 스크류식 원심펌프의 특성에 미치는 영향)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho;Matsumoto, Yoichiro
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.37-44
    • /
    • 1999
  • In a screw-type centrifugal pump, the pump head deteriorates from single-phase flow to the choke due to an increased air entrainment at a wide tip clearance compared to that of a narrow tip clearance. Moreover, at a narrow tip clearance, the pump head became partially higher in a two-phase flow than that of a single-phase flow near the best efficiency point in low void fraction region. Therefore, we observed the internal flow pattern by using a stroboscope and we measured the mean size of bubbles from the images obtained with a high speed camera. Then, we investigated the influences of the mean size of bubbles, tip clearances and flow patterns on pump performance.

  • PDF

The Effect of Eccentricity on Aerated Oil in High-Speed Journal Bearing

  • Chun, Sang Myung
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The influence of aerated oil on a high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction force may be changed so visibly for the high speed bearing operation.

  • PDF

Interaction between a rising toroidal bubble and a free surface (상승하는 원환형 기포와 자유수면의 상호작용)

  • Moon, Eunseong;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.55-62
    • /
    • 2022
  • We experimentally investigate a rising toroidal bubble impacting a free surface. The toroidal bubble is created by releasing pulsed air. By adjusting the volume and circulation of the toroidal bubble, the characteristics of interactions between the toroidal bubble and the free surface are identified. Because of the impact by the toroidal bubble, the free surface is convexly deformed upwards above the center point of the toroidal bubble, while the edge of the deformed free surface is pulled down. When the circulation of the bubble becomes stronger, the surface which was pulled down breaks eventually, and air above the free surface is entrained into water, forming an unstable toroidal bubble. The deformations at the center and edge of the free surface are in a linear relationship with the Froude number and the Weber number, respectively.

The Effect of Entrained Air Contents on the Properties of Freeze-thaw Deterioration and Chloride Migration in Marine Concrete (연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.161-168
    • /
    • 2008
  • The freeze-thaw deterioration and chloride attack, which are the typical degradation factors for durability of marine concrete, are significantly affected by pore structures in terms of penetration and diffusion. These pore structures of concrete are closely related to the types and amount of AE agent, used to guarantee the resistance of freeze-thaw deterioration, and the elapsed time before concrete pouring. This paper evaluates the durability of concrete based on the results of tests on cylinder specimens and core specimens from mock-up members with different air content of 4~6% and 8~10%, respectively. According to the test results, the air content of hardened concrete is 2.5~5.2% at 7 days and 2.4~5.1% at 28 days. These air contents are about half of the initial values just after the concrete mixing. Judging from the amount of scale after the freeze-thaw test completed, air content of 8~10% is slightly more beneficial against the deterioration of concrete than air content of 4~6%. Meanwhile, the core specimens from mock-up members exhibit somewhat unfavorable freeze-thaw deterioration and chloride migration characteristic compared with the cylinder specimens tested in the laboratory under the same mixing condition, as to show 106% in freeze-thaw test and 160% in chloride diffusion coefficient test, respectively.

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Evaluation of the Exothermic Properties and Reproducibility of Concrete Containing Electro-conductive Materials (전기전도성 재료를 혼입한 콘크리트의 발열특성 및 재현성 평가)

  • Song, Dong-Geun;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2016
  • From 1990's, a study on the development of exothermic concrete, a concrete which electro-conductive material is mixed, has been proceeded. However, due to the difficulty of exothermic reproducibility of concrete specimen, the study has been unable to continuously carried out. Accordingly, this study was focused on developing an exothermic concrete for the purpose of snow-melting material. Cement paste and mortar specimens mixed with graphite, conductive metal powder and chemical admixture were made. The evaluation of exothermic performance and reproducibility was conducted under $-2^{\circ}C$ of low temperature. In addition, micro-chemical analysis was carried out to investigate a cause of exothermic reproducibility. As a test result, the specimen mixed with graphite and superplasticizer with air entrained showed the best exothermic performance and reproducibility. Through micro-chemical analysis, it is judged that polymer or methacrylic acid (MAA), the contents inside the superplasticizer with air entrained, gave exothermic reproducibility by generating the electrochemical reaction with graphite.