• Title/Summary/Keyword: Entrained air

Search Result 119, Processing Time 0.023 seconds

Oxygen Transfer Characteristics of an Ejector Aeration System

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • The objective of this study was to investigate the oxygen transfer characteristics of an ejector aeration system. In order to evaluate the oxygen transfer performance of the ejector aeration system, a comparative experiment was conducted on a conventional blower aeration system. The effect of entrained air flow rate and aerating water temperature on the oxygen transfer efficiency was investigated. The dissolved oxygen concentration increased with increasing entrained air flow rate, but decreased with increasing aerating water temperature for two aeration systems. The volumetric mass transfer coefficient increased with increasing entrained air flow rate and with increasing aerating water temperature for both aeration systems. The average mass transfer coefficient for the ejector aeration system was about 20% and 42% higher than that of the blower aeration system within the experimental range of entrained air flow rates and aerating water temperatures.

An Experimental Study on Freezing and Thawing Resistance of Fly Ash Concrete (플라이애쉬 콘크리트의 동경융해저항성에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.128-133
    • /
    • 2001
  • It is generally known that the concrete structure subjected to severe environment is much affected by the corrosion of reinforcement, the freezing and thawing action of concrete structure. The main objective of this study is to investigate the freezing and thawing resistance of concrete including fly ash. The effect of the air content in concrete using fly ash is investigated. The experimental study is conducted for 10 mix-ratio cases of concrete of which variables are content of fly ash, concrete compressive strength and containment of air-entrained admixtures. Test results show that the freezing and thawing resistance improves as the amounts of fly ash increase, and concrete with air-entrained admixtures has good freezing and thawing resistance. The concrete with fly ash is to be included air-entrained admixture according to content of fly ash in order to increase the freezing and thawing resistance.

  • PDF

An experimental study on quality change of concrete according to fly ash using (플라이애쉬 사용에 따른 콘크리트 품질변화에 관한 실험적 연구)

  • Park, Il-Yong;Paik, Min-Su;Shon, Jong-Kyu;Choi, Soo;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.147-152
    • /
    • 1999
  • The purpose of this study is to offer foundmental information of fly ash concrete for field application. Through before study of fly ash concrete, various properties were checked. but when fly ash was added In concrete, entrained air quantity was decreased as fly ash substitution is increased in fresh concrete. so entrained air(below AE) quantity and a kind of AE according to fly ash substitution was tested basic properties. Also water-reducing efficiency was tested. And hydration heat according to fly ash substitution was tested by KR-100. As result of test, according to fly ash substitution increase, entrained air quantity is increase for target entrained air quantity, water-reducing efficiency and hydration heat are positive.

  • PDF

A Study on the Air-Entrained Properties in mortar Using Fly-ash (플라이애쉬 혼합 모르터의 공기연행특성에 대한 연구)

  • 하상욱;김진춘;노갑수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.137-140
    • /
    • 1998
  • An entrained air is important in improving freeze/thaw resistance to the concrete structures. To achieve a proper degree of air entrainment, air entraining admixtures(AEA) are typically added to the concrete mixture, but it has been noted that an increase in the carbon content(LOI) of fly ash causes problems in proper air entrainment in concrete. In this study, the entrained air content of mortar with fly ash as an additive was considered according to the mix design as a type of AEA, adding amount of fly ash and AEA, and the elapsed time. Moreover, two different types of measurement were also tired for air content.

  • PDF

ESTIMATION TECHNIQUE Of AIR CONTENT IN TUTOMATIC TRANSMISSION FLUID BY MEASURING EFFECTIVE BULK MODULUS

  • Cho, Baek-Hyun;Lee, Hyoun-Woo;Oh, Jong-Sun
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • It is well known that the entrained air in oil causes appreciable reduction in the stiffness of hydraulic systems. It makes the response delay of the systems and sometimes destroys the stability. Because the hydraulic systems of automatic transmissions are operated in relatively low pressure and high temperature, it is very important to analyze the effects of the air included in automatic transmission fluid. However, it is difficult to derive the generalized model to describe the effective bulk modulus theoretically or measure it in actual operating conditions of automatic transmissions. This paper reviews previous studies of the air effects in hydraulic systems and the measurement techniques of the effective bulk modulus in operating conditions. Based on this work, the theoretical model with moderate complexity and the measurement technique of the effective bulk modulus considering entrained air effect at real operating conditions are suggested. Our paper also shows that the quantity of the entrained air in the automatic transmission fluid can be estimated from the experimental results.

Improvement for Natural Ventilation Flow inside a Large Factory Building Using Louver-t ype Ventilator (루버를 이용한 대형공장 내부 자 연환기유동 개선에 관한 연구)

  • Kang, Jong-Hoon;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.705-706
    • /
    • 2008
  • When heat generated inside a large factory building is not discharged due to a stagnant flow, the working environment of workers becomes worse and the cooling of high-temperature products such as hot-rolling coils is delayed. To investigate the natural ventilation inside a large factory building, experimental studies were carried out using wind-tunnel tests. The scale-down factory building models were placed in an atmospheric boundary layer (ABL) and the mean and fluctuating velocity fields were measured using a particle image velocimetry (PIV) technique. For the prototype factory model, the outdoor air is only entrained into the factory building through the one-third open windward wall, and stagnant flow is formed in the rear part of the target area. In order to improve the indoor ventilation environment of the factory building, three different louver-type ventilators were attached at the upper one-third open windward wall of the factory model. Among the three louver ventilators tested in this study, the ventilator model #3 with the outer louver (${\theta}_o$ = 90$^{\circ}$) and the inner louver (${\theta}_i$ = -70$^{\circ}$) was found to improve the natural ventilation inside the factory building model effectively. The flow rate of the entrained air was increased with aligning the outer louver blades with the oncoming wind and guiding the entrained air down to the ground surface with elongated inner louver blades.

  • PDF

ESTIMATION OF CONCRETE STRENGTH AND QUANTIFICATION OF CONCRETE DETERIORATION BY X-RAY TECHNIQUE WITH CONTRAST MEDIUM (X선조영촬영에 의한 콘크리트강도의 추정과 콘크리트열화의 수치화)

  • Takeda, Mitsuhiro;Otsuka, Koji;Lee, Sang-Hun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.41-44
    • /
    • 2008
  • The purposes of this study are to estimate thestrength of concrete and quantify the deterioration of concrete by a unique X-ray technique with a contrast medium. In order to estimate the strength of concrete, specimens with different water-cement ratios were fabricated using non-air-entrained concrete, air-entrained concrete and mortar to determine the relationship between their compressive strength and the transit dose obtained by the X-ray technique. Also, an experiment to quantify deterioration was carried out on specimens that were subjected to freezing and thawing action to different levels of dynamic elastic modulus. As a result of this experiment, estimation of the strength and relative dynamic elastic modulus of deteriorated mortar, concrete and air-entrained concrete was found feasible by measuring the transit dose by the X-ray technique.

  • PDF

Design of Gas Burner for Cooking (조리기기용 가스버너 설계)

  • Shim, S.H.;Kim, S.J.;Keel, S.I.;Yun, J.H.;Kim, I.K.;Han, I.H.;Lee, D.R.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.202-211
    • /
    • 2000
  • Characteristics of the fuel injection and entrainment of the primary air of gas burner have been investigated. Primary air flow rates that entrained by gas streams play major role to control the performance of the partially premixed combustion. Pressure distributions of mixing tube assembly are studied as major parameter for increasing the primary air flow rates. Buoyancy-effect burner is proposed as one alternative to improve the pressure distribution. Buoyancy effect caused by metal ring placed around the flame holes reduces pressure of the entrance of the mixing tube and that, entrained air flow rates are increased.

  • PDF

Evaluation of Air Void System and Permeability of Latex-Modified Concrete by Image Analysis Method

  • Jeong, Won-Kyong;Yun, Kyong-Ku;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.41-48
    • /
    • 2007
  • Addition of latex to concrete is known to increase its durability and permeability. The purpose of this study is to analyze air void systems in latex-modified concretes using a reasonable and objective method of image analysis with such experimental variables as water-cement (w/c) ratios, latex contents (0%, 15%) and cement types (ordinary portland cement (OPC), high-early strength (HES) cement and very-early strength (VES) cement). The results are analyzed by spacing factor, air volume (content) after hardening, air void distribution and structure. Additionally, air void systems and permeability of latex-modified concrete (LMC) are compared by a correlation analysis. The results are as follows. The LMC of the same w/c ratio showed better air entraining (AE) effect than OPC with AE water reducer. The VES-LMC showed that the quantity of entrained air below $100{\mu}m$ increased more than four times. For the case of HES-LMC, microscopic entrained air between the range of 50 to $500{\mu}m$ increased greater than 7 times even in the absence of anti-foamer. Although spacing factor was measured rather low, the permeability of latex-modified concrete was good. It is construed that air void system does not have a considerable effect on the property of latex-modified concrete, but latex film (membrane) has a definite influence on the durability of LMC.