Improvement for Natural Ventilation Flow inside a Large Factory Building Using Louver-t ype Ventilator

루버를 이용한 대형공장 내부 자 연환기유동 개선에 관한 연구

  • 강종훈 (포항공대 기계공학과 대학원) ;
  • 이상준 (포항공대 기계공학과)
  • Published : 2008.03.26

Abstract

When heat generated inside a large factory building is not discharged due to a stagnant flow, the working environment of workers becomes worse and the cooling of high-temperature products such as hot-rolling coils is delayed. To investigate the natural ventilation inside a large factory building, experimental studies were carried out using wind-tunnel tests. The scale-down factory building models were placed in an atmospheric boundary layer (ABL) and the mean and fluctuating velocity fields were measured using a particle image velocimetry (PIV) technique. For the prototype factory model, the outdoor air is only entrained into the factory building through the one-third open windward wall, and stagnant flow is formed in the rear part of the target area. In order to improve the indoor ventilation environment of the factory building, three different louver-type ventilators were attached at the upper one-third open windward wall of the factory model. Among the three louver ventilators tested in this study, the ventilator model #3 with the outer louver (${\theta}_o$ = 90$^{\circ}$) and the inner louver (${\theta}_i$ = -70$^{\circ}$) was found to improve the natural ventilation inside the factory building model effectively. The flow rate of the entrained air was increased with aligning the outer louver blades with the oncoming wind and guiding the entrained air down to the ground surface with elongated inner louver blades.

Keywords