• Title/Summary/Keyword: Enthalpy of Formation

Search Result 107, Processing Time 0.03 seconds

An Isothermal Titration Microcalorimetric Study on the Interaction of Three Water-Soluble Porphyrins with Histone H2B

  • Bordbar, A.K.;Ghaderi, A.R.;Safaei, E.;Tangestaninejad, S.;Eslami, A.;Saboury, A.A.;Moosavi Movahedi, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.547-551
    • /
    • 2003
  • In the present work, the interaction of three water soluble porphyrins, tetra(p-trimethyle) ammonium phenyl porphyrin iodide (TAPP) as a cationic porphyrin, tetra sodium meso-tetrakis (p-sulphonato phenyle) porphyrin (TSPP) as an anionic porphyrin and manganese tetrakis (p-sulphonato phenyl) porphinato acetate (MnTSPP) as a metal porphyrin, with histone H₂B have been studied by isothermal titration microcalorimetry at 8 mM phosphate buffer, pH 6.8 and 27 °C. The values of binding constant, entropy, enthalpy and Gibbs free energy changes for binding of the first MnTSPP, and first and second TSPP and TAPP molecules were estimated from microcalorimetric data analysis. The results represent that the process is both entropy and enthalpy driven and histone induces self-aggregation of the porphyrins. The results indicate that both columbic and hydrophobic interactions act as self-aggregation driving forces for the formation of aggregates around histone.

[4+4] Cyclodimer of tert-Butyl 9-Anthroate and Furan and [4+4] Cyclodimers of Alkyl 9-Anthroate

  • 노태희;임희준;김대균;전경문
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.998-1002
    • /
    • 1997
  • Irradiation of tert-butyl 9-anthroate and furan through a Uranium glass filter gave the [4+4] cyclodimer (21.8%) of tert-butyl 9-anthroate and furan and the 1,4-10',9' cyclodimer (4.2%) of tert-butyl 9-anthroate as well as the 9,10-10',9' cyclodimer (65.7%) of tert-butyl 9-anthroate. The [4+4] cyclodimer of tert-butyl 9-anthroate and furan was found to be thermally dissociated into their unit components with the activation enthalpy of 35.6 kcal/mole and the activation entropy of 7.6 eu, and photochemically dissociated to produce excited tert-butyl 9-anthroate. Quantum yields for the photodissociation to tert-butyl 9-anthroate and the formation of excited tert-butyl 9-anthroate in cyclohexane at room temperature were determined to be 0.56 and 0.19, respectively. The 1,4-10',9' cyclodimer of tert-butyl 9-anthroate in DMF was thermally dissociated into tert-butyl 9-anthroate with the activation enthalpy of 34.8 kcal/mole and the activation entropy of 16.4 eu. Upon irradiation, the [4+4] cyclodimers of tert-butyl 9-anthroate and the [4+4] cyclodimers of methyl 9-anthroate were quantitatively dissociated. However, no adiabatic photoreversion was observed from any of the cyclodimers. Quantum yields for the photodissociation in cyclohexane at room temperature were measured and compared.

Thermodynamic Investigation of the Formation of Complexes between Norfloxacin and Various Mononucleotides

  • Kwon, Yong-Jun;Lee, Hyun-Mee;Han, Sung-Wook;Lee, Dong-Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3233-3238
    • /
    • 2011
  • The fluorescence of norfloxacin was quenched by various nucleotides. The ratio of the fluorescence intensities in the absence and presence of nucleotide was linearly dependent on nucleotide concentration, suggesting that quenching occurred through the formation of nonfluorescent norfloxacin-nucleotide complexes. The gradient of the linear relationship represented the equilibrium constant of complex formation; it decreased with increasing temperature. The slopes of van't Hoff plots constructed from the temperature-dependent equilibrium constants were positive in all cases, indicating that complex formation was energetically favorable - i.e., exothermic, with negative Gibb's free energy. The equilibrium constant increased when triphosphate was used instead of monophosphate. It also increased when the oxygen at the $C'_2$ position of the nucleotide was removed. Both enhancements were due to entropic effects: entropy decreased when complexes with AMP or GMP formed, while it increased when norfloxacin complexed with ATP, GTP, dAMP and dGMP.

Charge Transfer Complexing Between Indole Derivatives and Methylviologen and Effects of Sodium Dodecyl Sulfate on It

  • Joon Woo Park;Sung-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.121-126
    • /
    • 1984
  • The charge transfer complex formations between indole derivatives and methylviologen were investigated spectroscopically. In aqueous solutions near room temperature, the order of complex stability was tryptamine < tryptophan < indole < indole acetate, which is the reverse order of the magnitude of molar absorptivities. This was interpreted as involvement of contact charge transfer. The decrease of enthalpy of complex formation (-${\Delta}$H) was highest in tryptamine, and lowest in indole acetate. ${\Delta}$H and entropy of complex formation (${Delta}$S) varied nearly in a linear fashion with isokinetic temperature $242^{\circ}$K. These results were attributed to the hydration-dehydration properties of the side chains in indole derivatives. Except indole acetate, the complex formations were greatly enhanced by the addition of sodium dodecyl sulfate(SDS). However, the direct relationship between the enhanced complex formation and SDS micelle formation was not found. The enhanced charge transfer interaction inSDS solutions was attributed to the increased ${\Delta}$S by interaction between methylviologen and SDS in premicellar level. The order of complex stability in SDS solutions was indole acetate < tryptophan < trypamine < indole, which reflects the hydrophobicity of indole derivatives as well as electrostatic interaction between indole derivatives and methylviologen associated with SDS.

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Thermodynamic Characteris tics of Surface Activities of N-Alkyl Pyridinium Bromide (N-Alkyl Pyridinium Bromide류의 계면활성에 대한 열역학적 특성)

  • Kim, Yeoung-Chan;Kim, Dong-Sik;Jeong, Soon-Wook;Shon, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-114
    • /
    • 1991
  • In relation to the preparation of Langmuir-Blodgett thin film, four kinds of N-alkylpyridiniurn bromide were synthesized. The values of surface tensions of these materials, measured with a Traube stalagmometer, gave the relationship between the critical micells hydrophobic radical and between CMC and temperature. Values of thermodynamic properties(${\Delta}H^0_m,\;{\Delta}S^0_m,\;{\Delta}G^0_m,$) for the formatoin of micelle were also obtained. Experiments gave the following results; at the temperature range between 40 and 60$^{\circ}C, CMC of Hexadecyl-, Octadecyl-, Eicosyl-, and Docosyl-Pyridinium Bromide were $7.64{\times}10^{-4}{\sim}9.13{\times}10^{-4},\;3.85{\times}10^{-4}{\sim}4.60{\times}10^{-4},\;2.00{\times}10^{-4}{\sim}2.39{\times}10^{-4},\;and\;1.07{\times}10^{-4}{\sim}1.28{\times}10^{-4}$ mol/l, respectively. Surface tension, ${\Gamma}_{CMC}$, of those were 33.49${\sim}$36.00, 34.78${\sim}$37.61, 35.49${\sim}$37.61 and 38.76${\sim}$55.80 dyne/cm, respectively, The relationship between CMC and the mumber of carbon atoms in the hydrophobic radical, N was expressed as follows : Log(CMC)=A-BN where A and B are constants. At the temperature range between 40 and 60$^{\circ}C$, the change of Gibbs evergy (${\Delta}G_m$) for one methylene group ($-CH_2-$) were -0.65RT, respectively, The minus values of enthalpy change (${\Delta}H_m$) suggest that the formation of micelle is exothermic. Additionally, the overall increase in the entropy change (${\Delta}S_m$) with respect to the temperature increase suggests that the formation of micelle is attained by a exothermic enthalpy directed process.

Aromatic Formation from Vinyl Radical and Acetylene. A Mechanistic Study

  • Natalia, Debby;Indarto, Antonius
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.319-322
    • /
    • 2008
  • The viability of acetylene addition in each step of aromatic formation initiated by vinyl radical and acetylene also with its competition with structure rearrangement is investigated by determining optimal geometries and barrier and reaction energies using quantum mechanical methods. In principle, the addition reaction has more difficult in term of free energy and enthalpy compared to geometry arrangement. Under combustion conditions, i.e. T = 1200 K, acetylene addition is unfavorable mechanism as the barrier energy values rise much higher than that of geometry arrangement. However, in longer chain hydrocarbon case, e.g. n-CxHx+1 where x ³ 8, C-C bond rotation is rather difficult and requires high energy to form a ring structure, elongation chain is preferable.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.

Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

  • Ghule, Vikas D.;Sarangapani, Radhakrishnan;Jadhav, Pandurang. M.;Tewari, Surya. P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.564-570
    • /
    • 2012
  • s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different $-NO_2$, $-NH_2$ and $-N_3$ substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of $-NO_2$ group improves the density as compared to $-N_3$, and $-NH_2$ groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.

Comparison of Inclusion Complex Formation Capacity of Cyclodextrins with Various Molecules and Characterization of Cyclodextrin-fatty Acid Complex (Cyclodextrin의 Inclusion Complex 형성능과 Fatty Acid와의 Complex 형성조건과 특성)

  • 이용현;정승환박동찬
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.149-158
    • /
    • 1995
  • The capacity of inclusion complex formation between ${\alpha}$-, ${\beta}$-, ${\gamma}$-cyclodextrins(CDs) and various compounds, such as pH indicators, biloslalns, glycoside, amino acid, and fatty acids, was compared. Fatty acid was identified as the most suitable ligand for fractionation of CDs in terms of capacity and selectivity. The effects of complex formation conditions, such as, mixing ratio of CD and fatty acid, pH, ionic strength, and temperature, on the capacity of fatty acrid-CD complex was also investigated. The carbon number of fatty acids was identified as the most significant factor determining the capacity and selectivity of inclusion complex formation of CDs. Capric acid(C10) and palmitic acid(C16) showed high specificity for ${\alpha}$- and ${\beta}$-CDs, respectively. Under the optimal conditions, the molar ratio of complex formed was found to be 1.0:2.6 for ${\alpha}$-CD/capric acid and 1.0:1.9 for ${\beta}$-CD/palmitic acid. X-ray diffraction and infrared spectrum of the formed inclusion complex were analyzed. The changes of enthalpy($\Delta$H) of the inclusion complex formation reaction was evaluated by differential scanning calorimetry, showed that the reaction was endothermic.

  • PDF