• Title/Summary/Keyword: Enthalpy of Formation

Search Result 108, Processing Time 0.027 seconds

Temperature and Ligand Effects on the Eu(Ⅲ) Emission Spectra in the Aqueous Solution (수용액에서의 Eu(Ⅲ) 착물의 형광스펙트럼에 영향을 미치는 온도 및 리간드 효과에 관한 연구)

  • Lee, In Suk;Kim, Geon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.548-554
    • /
    • 1990
  • Temperature effects on the fluorescence emission spectra of 0.01 M Eu(III) ion with ClO$_4$, Cl$^-$, NO$_3$ were studied. Relative intensity change of hypersensitive band ($^5D0\; {\to}\;^7F_2$) and nonhypersensitive band ($^5D0 \;{\to}\;^7F_1$) was quite remarkable with temperature and ligand. The relative intensity change was interpreted as the change of formation constant and used to calculation the enthalpy change of $Eu(H_2O)_X^{3+}$+ to EuL(H$_2O)_{X-1}^{2+}$ complex. $\Delta{H}$ of $Eu(H_2O)_X^{3+}$ to EuCl(H$_2O)_{X-1}^{2+}$ was roughly 15 kJ/mol and temperature independent, but $\Delta{H}$ of EuNO$_3(H_2O)_{X-1}^{2+}$ was changed with temperature; -11 kJ/mol at 25$^{\circ}C$ and 47 kJ/mol at 250$^{\circ}C$.

  • PDF

Effects of Temperature and n-Alcohols (Propanol, Butanol, Pentanol and Hexanol) on the Micellization of Cetyltrimethylammonium Bromide (Cetyltrimethylammonium Bromide의 미셀화 현상에 미치는 온도 효과 및 n-알코올(프로판올, 부탄올, 펜탄올 및 헥산올) 효과)

  • Lee, Byeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.539-546
    • /
    • 1994
  • The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of cetyltrimethylammonium bromide(CTAB) in a series of aqueous solutions containing medium chain-length n-alcohols(Propanol, Butanol, Pentanol and Hexanol) have been determined from the concentration dependence of electrical conductance at serveral temperature from $17^{\circ}C\;to\;41^{\circ}C.$ Thermodynamic parameters $({\Delta}G^o_m,\;{\Delta}H^o_m,\;{\Delta}S^o_m,\;and\;{\Delta}C_p)$ associated with micelle formation of CTAB have been also estimated from the temperature dependence of CMC and $\beta$ values, and the significance of these parameters and their relation to the theory of micelle formation have been considered. The results show that an enthalpy-entropy compensation effect is usually observed for the micellization of CTAB. The effects of n-alcohols on the micellar properties (CMC and $\beta$) of CTAB solutions have been also investigated. The addition of n-alcohol to the CTAB solution in a small quantity decreases the CMC value and the counterion binding constant $(\beta)$ at the CMC, but the addition of n-alcohol in an excessive quantity increases the CMC values on the conterary. These results have been explained in terms of the effect of the micelle-solubilized alcohol on the micellar surface charge density.

  • PDF

Complexation of Pyridino-Azacrown Ethers with Alkali Metal Ions in N,N-Dimethylformamide (N,N-디메틸포롬아미드 용액에서의 알칼리금속이온과 피리디노-아자크라운에테르와의 착물화 반응)

  • Kim, Dong Won;Shin Young-Kook;Kim Chang Suk;Oh Je Jik;Jeon Young Shin;Kim, Tae Seung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.669-673
    • /
    • 1992
  • The stability constants, K for the complexation of alkali metal cations(Li^+, Na^+, K^+, Rb^+, and Cs^+) with both 4,5: 13,14-dibenzo-6,9,12-triaza-bicyclo [15,3,1] heneicosa-1 (21),7,19-trioxa-2,16-dione (DBPDA) and 6,9,12-trioxa-3,15,21-triaza bicyclo [15,3,1] heneicosa-1 (21),17,19-triene-2,16-dione (PDA) in N,N-Dimethylformamide (DMF) were determined conductomatically at various temperatures. At all the experiment temperatures, the K value sequences of the alkali metal ions with DBPDA and PDA are Cs^+ > K^+ > Rb^+ > Li^+ > Na^+ and Cs^+ > K^+ > Rb^+ > Li^+ > Na+, respectively. The K values for DBPDA are larger those of PDA for alkali metal ions. The widely recounted "hole-size-selectivity" principle is not applicable to these complexation systems. From the K values obtained at different temperatures, {\delta}H and T{\delta}S for these complexation reactions were determined. The enthalpy change plays principal important role in the complex formation by DBPDA. However, in the case of PDA, the entropy change also contributes to its complex formation.

  • PDF

The Effects of Ionic Strength on Polytungstate Ions Equilibrium in KCl Solution (다중텅그스텐산 이온평형에 대한 이온세기의 영향. 염화칼륨용액에서)

  • Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.157-170
    • /
    • 1974
  • The effects of ionic strength on the polynucleation reaction of tungstate ions and the protonized reaction of polytungstate ions have been investigated in the range of ionic strength from 1 M to 4 M KCl.The hexatungstate ions and the protonized forms of hexatungstate ions are formed in the tungstate solutions whose ionic strengths are 1 M to 4 M KCl. The equilibrium constants for the formation of hexatungstate ions and the protonized forms of hexatungstate ions are calculated in the range of ionic strength from 1 M to 4M KCl. The enthalpy changes for the formation of hexatungstate ions and the protonized forms of hexatungstate ions are as follows; $7H^++{6WO_4}^{2-}={HW_6O_{21}}^{5-}+3H_2O\;\;{\Delta}H^{\circ}=-62.4{\pm}0.6$$H^++{HW_6O_{21}}^{5-}={H_2W_6O_{21}}^{4-}\;\;{\Delta}H+_1^{\circ}=-4.12{\pm}0.10$$H^++{H_2W_6O_{21}}^{4-}={ H_3W_6O_{21}}^{3-}\;\;{\Delta}H_2^{\circ}=-4.36{\pm}0.30$ The free energy and entropy changes for the above reactions have been also calculated. A linear relation is formed between $log k_{6,7}$ and ionic strength, and $log k_1\;or\;log k_2\;vs{\cdot}{\mu}.$ $log k_{6,7}\;=\;D{\mu}+I,\;\;where\;D\;=\;1.66{\pm}0.02$$log k_1\;=\;D_1{\mu}+I_1,\;\;where\;D_1\;=\;-8.065{\pm}0.001$$log k_2\;=\;D_2{\mu}+I_2,\;\;where\;D_2\;=\;-0.376{\pm}0.006$

  • PDF

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.366-373
    • /
    • 1998
  • Polydentate Schiff base ligands, BSDT(1,9-bis(2-hydroxyphenyl)-2,5,8-triaza-1,8-nonadiene) having $N_3O_2$ atoms, BSTT(1,12-bis(2-hydroxyphenyl)-2,5,8,11-tetraaza-1,11-dodecadiene) having $N_4O_2$ atoms, BSTP(1,15-bis(2-hydroxyphenyl)-2,5,8,11,14-pentaaza-1,14-pentadodecadiene) having $N_5O_2$ atoms were synthesized. Protonation constants of these polydentate ligands were measured by potentiometry. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1:1 complexes with Schiff base ligands. Stability constants for the complex formation were in the order of Cu(II)>Ni(II)>Zn(II), and for the ligands were in the order of BSTP>BSTT>BSDT. There are due to the increase in the number of donor atoms. Both enthalpy and entropy changes were obtained in negative values. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF

The Influence of Thermal Condition on the Variation of Reaction Product Composition depending on the Constituent of Dolomite in the Absorption Process of SO2 by Dolomite (Dolomite에 의한 SO2 흡수공정에서 Dolomite 조성에 따른 생성물질 구성 변화에 대한 열적 조건 영향)

  • You, Dong-Ju;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • The thermal effect on the compositional change of the $SO_2$ absorption process product was investigated compared with the composition of raw material when dolomite is employed in place of lime in the scrubbing process based on thermodynamic estimation. It was considered that the equilibrium reactions which directly related with the formation of $CaSO_4$ and $MgSO_4$, the absorption process products, are those between $Ca^{2+}$ and $Ca(OH)_2$, $Mg^{2+}$ and $Mg(OH)_2$, and the secondary dissociation reaction of $H_2SO_4$. It was thought to be necessary to examine the enthalpy change for the formation reactions of $CaSO_4$ and $MgSO_4$ along with the thermal feature of the relative reactions to figure out the influence of temperature on the compositional change of absorption process products. The stable regions for $Ca(OH)_2$ and $Mg(OH)_2$ in Pourbaix diagram were found to be increased as temperature rises and the equilibrium reaction between $Ca^{2+}$ and $Ca(OH)_2$ was investigated to be more strongly influence by temperature change compared with the equilibrium reaction between $Mg^{2+}$ and $Mg(OH)_2$. The amounts of $CaSO_4$ and $MgSO_4$ were anticipated to be decreased with temperature considering the thermal characteristics for the equilibrium reactions regarding calcium, magnesium, and $H_2SO_4$. It was understood that the formation ratio between $CaSO_4$ and $MgSO_4$ is greater than the composition ratio between calcium and magnesium contained in dolomite at specific temperature and the decrease of the formation ratio of $CaSO_4$ and $MgSO_4$ with temperature was estimated to be diminished as the content of calcium in dolomite is increased. In addition, the extent of the change in the compositional ratio between absorption process products was examined to be reduced compared with the composition of raw material as the calcium content in dolomite is raised.

Hydrochemistry, Isotopic Characteristics, and Formation Model Geothermal Waters in Dongrae, Busan, South Korea (부산 동래 온천수의 수리화학 및 동위원소 특성, 생성모델 연구)

  • Yujin Lee;Chanho Jeong;Yongcheon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.229-248
    • /
    • 2024
  • This investigated the hydrogeochemical and isotopic characteristics of geothermal waters, groundwaters, and surface waters in Dongrae-gu, Busan, South Korea, in order to determine the origins of the salinity components in the geothermal waters, and their formation mechanisms and heat sources The geothermal waters are Na-Cl-type, distinct from surrounding groundwaters (Na-HCO3- and, Ca-HCO3- (SO4, Cl)-type) and surface waters (Ca-HCO3(SO4, Cl)-type). This indicates the geothermal waters formed at depth as compared with the groundwaters. δ18O and δD values of the geothermal waters are relatively depleted as compared with the groundwaters, due to altitude effects and deep circulation of the geothermal waters. Helium and neon isotope ratios (3 He/4He and, 4He/20Ne) of the geothermal waters plot on a single mixing line between mantle (3He = 3.76~4.01%) and crust (4He = 95.99~96.24 %), indirectly suggesting that the heat source is due to the decay of radioactive elements in rocks. The geothermal reservoir temperatures were calculated using the silica-enthalpy and Giggenbach models, yielding values of 82~130℃, and the depth of the geothermal reservoir is estimated to be 1.7~2.9 km below the surface. The correlation between Cl/Na and Cl/HCO3 for the Dongrae geothermal waters requires the input of salty water. The supply of saline composition is interpreted due to the dissolution of residual paleo-seawater.

A Study on the Micellization of Sodium Dodecyl Sulfate in 𝜔-Phenylakylammonium Salt Solution (𝜔-Phenylalkylammonium Salt의 수용액에서 Sodium Dodecyl Sulfate의 미셀에 관한 연구)

  • Ryu, Yeanho;Oh, Jung Hee
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1041-1047
    • /
    • 1997
  • The influence of $\omega$-phenylalkylammonium salt on the critical micelle concentration (CMC) of SDS has been examined using the electric conductivity method. CMC of SDS exhibited the tendency to decrease with the length of alkyl group of additives. The effect of temperature on CMC of SDS in additive solutions has been observed in the range of $18^{\circ}C-50^{\circ}C$. The free energy(${\Delta}G_m^{\circ}$) for the micellization of SDS is negative and the entropy(${\Delta}S_m^{\circ}$) is a large positive value. The enthalpy(ΔHm0is positive in low temperature($18^{\circ}C$) and negative in high temperature($>25^{\circ}C$). In the prensence of organic additives, the micellization of SDS was considered as a spontaneous process and to involve a phase transition. The values of ΔGm0has shown the tendency to increase but the values of ${\Delta}S_m^{\circ}$ and ${\Delta}H_m^{\circ}$ to decrease with the length of alklyl group of additive salts. The changes in ${\Delta}\kappa$(difference of specific conductivity) with increasing mole ratio of additives in the mixed solutions indicated the formation of mixed micelles between SDS and additives. The effect of the length of alkyl chain on the micellization of SDS demonstrated the penetration of organic additives into the palisade layer of the SDS micelle.

  • PDF

Characteristics of Amylose-Lipid and Cyclodextrin-Lipid Complexes (Amylose와 Cyclodextrin 및 Lipid의 Complex 형성 특성)

  • Rho, Hoe-Jin;Park, Chun-Soek;Kweon, Mee-Ra;Moon, Tae-Wha;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The characteristics of amylose-lipid complex(AL-complex) and cyclodextirn-lipid complex(CL-complex) were investigated by using Differential Scanning Calorimetry(DSC). The enzymatic hydrolysis of amylose which was liberated from AL-complex by the addtion of ${\beta}-cyclodextrin({\beta}-CD)$was also studied. The melting temperatures of AL-complex in corn, wheat, and rice starch were above $100^{\circ}C$ and there were no differences among them. In the presence of lysolecithin, the melting enthalpy and temperature of AL-complex were increased and lysolecithin was very effective in the formation of AL-complex. When ${\beta}-CD$ was added to AL-complex, the endothermic peak of AL-complex at $100^{\circ}C$ decreased and that of CL-complex at $70^{\circ}C$ appeared. These results indicated that the amylose was released from AL-complex by substituting ${\beta}-CD$ for amylose, then by forming CL-complex. As the added amount of ${\beta}-CD$ increased, the peak of AL-complex decreased whereas that of CL-complex increased. Enzymatic hydrolysis rate of AL-complex increased in the presence of ${\beta}-CD$, suggesting that amylose was dissociated from AL-complex and hydrolyzed by amylase.

  • PDF

The Availability of Automobile Catalytic Convert of Copper Based on the DFT Calculations of Cu-NO Complexes (Cu-NO 복합체에 대한 DFT 계산에 따른 Cu의 자동차 촉매변환기 적합성)

  • Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.358-363
    • /
    • 2018
  • The purpose of this study is to show the possibility of using Cu catalyst in removal of $NO_x$ from automobile exhaust which is regarded as the primary source of fine dust PM2.5. The energy and the bond lengths of the three possible structures of Cu-NO complex, which is formed by binding NO molecule to Cu, and the changes in IR and Raman spectra are calculated using MPW1PW91 method on the level of 6-311(+)G(d,p) of basis sets with Gaussian 09 program. As a result, the enthalpy of formation of the Cu-NO complexes are obtained as ${\Delta}H=104.89$, 91.98, -127.48 kJ/mol for the linear, bent, and bridging forms of them, respectively. And the bond lengths between N and O in NO complexes, which becomes longer than NO molecule, indicates that O is easily reduced from Cu-NO. In addition, the Cu-NO complexes using Cu catalyst can be easily measured by infrared or Raman spectroscopy because in the IR and Raman spectra of the NO and Cu-NO complexes the positon and the intensity of bands are definitely different in each vibration mode.