• Title/Summary/Keyword: Enthalpy exchanger

Search Result 56, Processing Time 0.025 seconds

Performance Characteristics on Environment Change of A/C applied Fin-tube and PF Heat Exchangers (환경변화에 따른 핀-관, PF 열교환기 적용 공조기 성능 특성 실험 연구)

  • Park, K.M.;Um, U.S.;Kwon, Y.C.;Lee, S.J.
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1267-1271
    • /
    • 2009
  • In the present study, performance characteristics on environment change of A/C applied fin-tube and PF heat exchangers were experimentally investigated. Capacity and COP changing an outlet air velocity, an indoor/outdoor temperature and a relative humidity were obtained. Air-enthalpy calorimeter was used. As the air velocity, indoor temperature and relative humidity increase, capacity and COP increase. PF A/C has smaller refrigerant weight than the fin-tube A/C. The performance of PF-2 A/C with the squarer fin was more excellent than that of PF-1 A/C with the triangler fin.

  • PDF

Comparison of Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions

  • Kim Nae-Hyun;Sin Tae-Ryong;Lee Eung-Ryul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.128-137
    • /
    • 2005
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately $30\%$ lower than the dry surface values. For the pressure drop, the wet surface yielded approximately $30\%$ higher values compared with the dry surface counterpart. Data were compared with existing correlations.

Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions (평판휜 열 교환기의 건표면, 습표면 열전달 및 압력손실에 관한 연구)

  • 민창근;조진표;오왕규;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.218-229
    • /
    • 2004
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately 30% lower than the dry surface values. For the pressure drop, the wet surface yielded approximately 30% higher values compared with the dry surface counterpart. Data were compared with existing correlations.

Air-side Heat Transfer and Friction Characteristics of Fined-tube Heat Exchangers under Heating Condition (핀-관 열교환기의 난방운전 시 공기측 열전달 및 마찰특성)

  • Kwon, Young Chul;Chang, Keun Sun;Ko, Kuk Won;Kim, Young Jae;Park, Byung Kwon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.476-482
    • /
    • 2006
  • An experimental study has been performed to investigate the characteristics of air-side heat transfer and friction of a fined tube heat exchanger under heating conditions. Air enthalpy calorimeter was used to obtain the performance evaluation and analysis of the fined tube heat exchanger. Eight finned tube heat exchangers with slit fin, louver fin, and plain fin were used. The air-side heat transfer coefficient was calculated by the log-mean-temperature-difference. Air-side heat transfer and friction were presented in terms of j factor and friction factor on Reynolds number. From the experimental result, it was found that the variations of air-side heat transfer and friction of fined tube heat exchanger with the change of the fin configuration, row number, fin pitch, and tube circuit were obtained. j factor and friction factor decreased with Reynolds number increased. The tube circuit affected the air-side heat transfer and friction. In the case of slit and louver fin, j factor of 1st row was higher than that of 2nd row. But, with increasing Re, j factor was reversed. The characteristics of j factor and friction factor of 2nd row heat exchanger were different according to the kind of fins.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Experimental Study on Cooling Performance of A/C applied Fin-tube and PF Heat Exchangers (핀-관, 평행류 열교환기를 적용한 공조기의 냉방성능 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang;Kwon, Jeong-Tae;Park, Gyung-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1789-1794
    • /
    • 2009
  • In the present study, the cooling performance characteristics on environment changes of A/C applied fin-tube and PF heat exchangers were experimentally investigated. Capacity and COP on an air velocity, an indoor/outdoor temperature and an indoor/outdoor relative humidity were obtained. Fin types of PF heat exchanger were a triangler and squarer form. The experimental data for the three kinds of heat exchangers were measured using the air-enthalpy calorimeter. Performance of PF A/C was more excellent than that of a fin-tube A/C. Also, the performance of PF-2 A/C with the squarer fin was more excellent than that of PF-1 A/C with the triangler fin. As the air velocity, the indoor temperature and the indoor relative humidity increase, capacity and COP increase. And as outdoor temperature increases, capacity and COP decrease. But, the performance change on the outdoor relative humidity was insignificant.

Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler (재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

Data Reduction on the Air-side Heat Transfer Coefficients of Heat Exchangers under Dehumidifying Conditions (제습이 수반된 공조용 증발기 습표면의 열전달계수 데이터 리덕션)

  • Kim, Nae-Hyun;Oh, Wang-Kyu;Cho, Jin-Pyo;Park, Hwan-Young;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.73-85
    • /
    • 2003
  • Four different methods of reducing the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two different heat and mass transfer models and two different fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the data with the reduction methods revealed that the single potential heat and mass transfer model yielded the humidity independent heat transfer coefficients. Two different fin efficiency models - enthalpy model and humidity model - yielded approximately the same fin efficiencies and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

Experimental Study on Heating Performance of Heat Pump Chiller under Overload, Frost and Defrost Conditions (과부하 및 착.제상 조건에서 히트펌프 칠러의 난방성능에 관한 실험 연구)

  • Kim, Jung-Seok;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Han, Hwa-Taik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the performance characteristics of the heat pump chiller under heating conditions were experimentally investigated. Capacity, input power and COP under overload, frost and defrost conditions were obtained. The experimental data for the heat pump chiller were measured using the air-enthalpy calorimeter and the constant temperature water bath. At overload condition, the heating capacity and COP increase about 25.7% and 19.1%, respectively. The variations of the evaporator, the compressor outlet and the condenser temperature were obtained under frost and defrost conditions. The frost and defrost period of the heat exchanger decreases about 36.0~56.1%.

Air-side Heat Transfer and Friction Characteristics of Finned Tube Beat Exchangers with Slit Fin or Plain Fin (슬릿과 평판 핀-관 열교환기의 공기측 열전달 및 마찰특성)

  • Kwon, Young-Chul;Chang, Keun-Sun;Park, Byung-Kwon;Kwon, Jeong-Tae;Jeong, Ji-Hwan
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.7-14
    • /
    • 2007
  • An experimental study is performed to investigate the effect of air-side heat transfer and friction on characteristics of finned tube heat exchanger under dry surface and wet surface conditions (RH 50%, 70%). Air enthalpy calorimeter is used to obtain the performance evaluation and analysis of a fined tube heat exchanger. Four finned tube heat exchangers with slit fin or plain fin are tested. The number of tube rows are 2 and 3, and the tube diameter is 7 mm. Air-side heat transfer and friction are presented in terms of j factor and friction factor. At dry surface condition, j factor decreases with increasing Re and j factor of 3 row is lower than that of 2 row. Also, the friction factor of a slit fin is larger than that of a plain fin. At wet surface condition, the heat transfer effect is more significant in the case of the slit fin than the plain fin and 2 row than 3 row. The j factor and friction factor are affected by humidity, tube row and fin configuration.