• 제목/요약/키워드: Ensemble technique

Search Result 212, Processing Time 0.025 seconds

Design for the Circularly Polarized Microstrip Cross Dipole Array Antenna by Electromagnetic Coupled Technique (전자기 결합기법을 이용한 원편파 마이크로스트립 크로스 다이폴 어레이 안테나의 설계)

  • 민경식;임정남
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 2001
  • This paper describes a design for the circularly polarized microstrip EMC cross dipole array antenna with the wide bandwidth. To realize the characteristics of wide bandwidth and circular polarization, the electromagnetic-coupled cross dipole element is proposed. The optimum design parameters of a circularly polarized EMC cross dipole element are calculated by the FDTD and the Ensemble. To obtain the uniform aperture illumination of electric field in an array, offset technique that the cross dipole elements are alternatively arranged on center of the microstrip feed line is adopted. In 20-element array design, the calculated axial ratio and gain are about 0.1dB and 9.9 dBi at 12 GHz, respectively, The frequency characteristics of a fabricated 20-element array antenna are measured. The calculated results agree well with the measured ones.

  • PDF

Application Examples Applying Extended Data Expression Technique to Classification Problems (패턴 분류 문제에 확장된 데이터 표현 기법을 적용한 응용 사례)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.9-15
    • /
    • 2018
  • The main goal of extended data expression is to develop a data structure suitable for common problems in ubiquitous environments. The greatest feature of this method is that the attribute values can be represented with probability. The next feature is that each event in the training data has a weight value that represents its importance. After this data structure has been developed, an algorithm has been devised that can learn it. In the meantime, this algorithm has been applied to various problems in various fields to obtain good results. This paper first introduces the extended data expression technique, UChoo, and rule refinement method, which are the theoretical basis. Next, this paper introduces some examples of application areas such as rule refinement, missing data processing, BEWS problem, and ensemble system.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN (U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가)

  • Yu, Jiyun;Yoon, Daeung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.140-161
    • /
    • 2022
  • Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.

Suggestion of Selecting features and learning models for Android-based App Malware Detection (안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안)

  • Bae, Se-jin;Rhee, Jung-soo;Baik, Nam-kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.377-380
    • /
    • 2022
  • An application called an app can be downloaded and used on mobile devices. Among them, Android-based apps have the disadvantage of being implemented on an open source basis and can be exploited by anyone, but unlike iOS, which discloses only a small part of the source code, Android is implemented as an open source, so it can analyze the code. However, since anyone can participate in changing the source code of open source-based Android apps, the number of malicious codes increases and types are bound to vary. Malicious codes that increase exponentially in a short period of time are difficult for humans to detect one by one, so it is efficient to use a technique to detect malicious codes using AI. Most of the existing malicious app detection methods are to extract Features and detect malicious apps. Therefore, three ways to select the optimal feature to be used for learning after feature extraction are proposed. Finally, in the step of modeling with optimal features, ensemble techniques are used in addition to a single model. Ensemble techniques have already shown results beyond the performance of a single model, as has been shown in several studies. Therefore, this paper presents a plan to select the optimal feature and implement a learning model for Android app-based malicious code detection.

  • PDF

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

Integrated Nano Optoelectronics

  • Jo, Moon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.117-117
    • /
    • 2012
  • Si:Ge alloy semiconductor nanocrystals (NCs) offer challenging opportunities for integrated optoelectronics/optoplasmonics, since they potentially allow unprecedentedly strong light-matter interaction in the wavelength range of the optical communication. In this talk, we discuss the recent research efforts of my laboratory to develop optoelectronic components based on individual group IV NCs. We present experimental demonstration of the individual NC optoelectronic devices, including broadband Si:Ge nanowire (NW) photodetectors, intra NW p-n diodes, Ge NC electrooptical modulators and near-field plasmonic NW detectors, where the unique size effects at the nanometer scales commonly manifest themselves. In particular, we demonstrated a scanning photocurrent imaging technique to investigate dynamics of photocarriers in individual Si:Ge NWs, which provides spatially and spectrally resolved local information without ensemble average. Our observations represent inherent size-effects of internal gain in semiconductor NCs, thereby provide a new insight into nano optoplasmonics.

  • PDF