• 제목/요약/키워드: Ensemble sensitivity

검색결과 32건 처리시간 0.02초

앙상블 칼만 필터를 이용한 태풍 우쿵 (200610) 예측과 앙상블 민감도 분석 (Typhoon Wukong (200610) Prediction Based on The Ensemble Kalman Filter and Ensemble Sensitivity Analysis)

  • 박종임;김현미
    • 대기
    • /
    • 제20권3호
    • /
    • pp.287-306
    • /
    • 2010
  • An ensemble Kalman filter (EnKF) with Weather Research and Forecasting (WRF) Model is applied for Typhoon Wukong (200610) to investigate the performance of ensemble forecasts depending on experimental configurations of the EnKF. In addition, the ensemble sensitivity analysis is applied to the forecast and analysis ensembles generated in EnKF, to investigate the possibility of using the ensemble sensitivity analysis as the adaptive observation guidance. Various experimental configurations are tested by changing model error, ensemble size, assimilation time window, covariance relaxation, and covariance localization in EnKF. First of all, experiments using different physical parameterization scheme for each ensemble member show less root mean square error compared to those using single physics for all the forecast ensemble members, which implies that considering the model error is beneficial to get better forecasts. A larger number of ensembles are also beneficial than a smaller number of ensembles. For the assimilation time window, the experiment using less frequent window shows better results than that using more frequent window, which is associated with the availability of observational data in this study. Therefore, incorporating model error, larger ensemble size, and less frequent assimilation window into the EnKF is beneficial to get better prediction of Typhoon Wukong (200610). The covariance relaxation and localization are relatively less beneficial to the forecasts compared to those factors mentioned above. The ensemble sensitivity analysis shows that the sensitive regions for adaptive observations can be determined by the sensitivity of the forecast measure of interest to the initial ensembles. In addition, the sensitivities calculated by the ensemble sensitivity analysis can be explained by dynamical relationships established among wind, temperature, and pressure.

앙상블 기반 관측 자료에 따른 예측 민감도 모니터링 시스템 구축 및 평가 (A Monitoring System of Ensemble Forecast Sensitivity to Observation Based on the LETKF Framework Implemented to a Global NWP Model)

  • 이영수;신설은;김정한
    • 대기
    • /
    • 제30권2호
    • /
    • pp.103-113
    • /
    • 2020
  • In this study, we analyzed and developed the monitoring system in order to confirm the effect of observations on forecast sensitivity on ensemble-based data assimilation. For this purpose, we developed the Ensemble Forecast Sensitivity to observation (EFSO) monitoring system based on Local Ensemble Transform Kalman Filter (LETKF) system coupled with Korean Integrated Model (KIM). We calculated 24 h error variance of each of observations and then classified as beneficial or detrimental effects. In details, the relative rankings were according to their magnitude and analyzed the forecast sensitivity by region for north, south hemisphere and tropics. We performed cycle experiment in order to confirm the EFSO result whether reliable or not. According to the evaluation of the EFSO monitoring, GPSRO was classified as detrimental observation during the specified period and reanalyzed by data-denial experiment. Data-denial experiment means that we detect detrimental observation using the EFSO and then repeat the analysis and forecast without using the detrimental observations. The accuracy of forecast in the denial of detrimental GPSRO observation is better than that in the default experiment using all of the GPSRO observation. It means that forecast skill score can be improved by not assimilating observation classified as detrimental one by the EFSO monitoring system.

Double Gyre 모형 해양에서 앙상블 칼만필터를 이용한 자료동화와 쌍둥이 실험들을 통한 민감도 시험 (Implementation of the Ensemble Kalman Filter to a Double Gyre Ocean and Sensitivity Test using Twin Experiments)

  • 김영호;유상진;최병주;조양기;김영규
    • Ocean and Polar Research
    • /
    • 제30권2호
    • /
    • pp.129-140
    • /
    • 2008
  • As a preliminary effort to establish a data assimilative ocean forecasting system, we reviewed the theory of the Ensemble Kamlan Filter (EnKF) and developed practical techniques to apply the EnKF algorithm in a real ocean circulation modeling system. To verify the performance of the developed EnKF algorithm, a wind-driven double gyre was established in a rectangular ocean using the Regional Ocean Modeling System (ROMS) and the EnKF algorithm was implemented. In the ideal ocean, sea surface temperature and sea surface height were assimilated. The results showed that the multivariate background error covariance is useful in the EnKF system. We also tested the sensitivity of the EnKF algorithm to the localization and inflation of the background error covariance and the number of ensemble members. In the sensitivity tests, the ensemble spread as well as the root-mean square (RMS) error of the ensemble mean was assessed. The EnKF produces the optimal solution as the ensemble spread approaches the RMS error of the ensemble mean because the ensembles are well distributed so that they may include the true state. The localization and inflation of the background error covariance increased the ensemble spread while building up well-distributed ensembles. Without the localization of the background error covariance, the ensemble spread tended to decrease continuously over time. In addition, the ensemble spread is proportional to the number of ensemble members. However, it is difficult to increase the ensemble members because of the computational cost.

앙상블 민감도를 이용한 2003년 8월 6일 집중 호우 역학 분석 (Ensemble Sensitivity Analysis of the Heavy Rainfall Event Occurred on 6th August 2003 over the Korean Peninsula)

  • 노남규;김신우;하지현;임규호
    • 대기
    • /
    • 제23권1호
    • /
    • pp.23-32
    • /
    • 2013
  • Ensemble sensitivity has been recently proposed as a method to analyze the dynamics of severe weather events. We adopt it to investigate the physical mechanism which caused the heavy rainfall over the Korean Peninsula on 6th August 2003. Two rainfall peaks existed in this severe weather event. The selected response functions are 1 hour accumulated rainfall amount of each rainfall peak. Sensitivity fields were calculated using 36 ensemble members which were generated by WRFDA. The sensitive regions for the first rainfall peak are located over the Shandong Peninsula and the Yellow Sea at 12 hours before the first rainfall peak. However, the 12-h forecast sensitivity for the second rainfall peak is revealed near Typhoon ETAU (0310) and midlatitude trough. These results show that the first rainfall peak was induced by low pressure which located over the northern part of the Korean Peninsula while the second rainfall peak was caused by the interaction between typhoon ETAU and midlatitude trough.

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • 한국지구과학회지
    • /
    • 제45권4호
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

Two Stage Deep Learning Based Stacked Ensemble Model for Web Application Security

  • Sevri, Mehmet;Karacan, Hacer
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.632-657
    • /
    • 2022
  • Detecting web attacks is a major challenge, and it is observed that the use of simple models leads to low sensitivity or high false positive problems. In this study, we aim to develop a robust two-stage deep learning based stacked ensemble web application firewall. Normal and abnormal classification is carried out in the first stage of the proposed WAF model. The classification process of the types of abnormal traffics is postponed to the second stage and carried out using an integrated stacked ensemble model. By this way, clients' requests can be served without time delay, and attack types can be detected with high sensitivity. In addition to the high accuracy of the proposed model, by using the statistical similarity and diversity analyses in the study, high generalization for the ensemble model is achieved. Within the study, a comprehensive, up-to-date, and robust multi-class web anomaly dataset named GAZI-HTTP is created in accordance with the real-world situations. The performance of the proposed WAF model is compared to state-of-the-art deep learning models and previous studies using the benchmark dataset. The proposed two-stage model achieved multi-class detection rates of 97.43% and 94.77% for GAZI-HTTP and ECML-PKDD, respectively.

단시간 다중모델 앙상블 바람 예측 (Wind Prediction with a Short-range Multi-Model Ensemble System)

  • 윤지원;이용희;이희춘;하종철;이희상;장동언
    • 대기
    • /
    • 제17권4호
    • /
    • pp.327-337
    • /
    • 2007
  • In this study, we examined the new ensemble training approach to reduce the systematic error and improve prediction skill of wind by using the Short-range Ensemble prediction system (SENSE), which is the mesoscale multi-model ensemble prediction system. The SENSE has 16 ensemble members based on the MM5, WRF ARW, and WRF NMM. We evaluated the skill of surface wind prediction compared with AWS (Automatic Weather Station) observation during the summer season (June - August, 2006). At first stage, the correction of initial state for each member was performed with respect to the observed values, and the corrected members get the training stage to find out an adaptive weight function, which is formulated by Root Mean Square Vector Error (RMSVE). It was found that the optimal training period was 1-day through the experiments of sensitivity to the training interval. We obtained the weighted ensemble average which reveals smaller errors of the spatial and temporal pattern of wind speed than those of the simple ensemble average.

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Gaussian noise addition approaches for ensemble optimal interpolation implementation in a distributed hydrological model

  • Manoj Khaniya;Yasuto Tachikawa;Kodai Yamamoto;Takahiro Sayama;Sunmin Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.25-25
    • /
    • 2023
  • The ensemble optimal interpolation (EnOI) scheme is a sub-optimal alternative to the ensemble Kalman filter (EnKF) with a reduced computational demand making it potentially more suitable for operational applications. Since only one model is integrated forward instead of an ensemble of model realizations, online estimation of the background error covariance matrix is not possible in the EnOI scheme. In this study, we investigate two Gaussian noise based ensemble generation strategies to produce dynamic covariance matrices for assimilation of water level observations into a distributed hydrological model. In the first approach, spatially correlated noise, sampled from a normal distribution with a fixed fractional error parameter (which controls its standard deviation), is added to the model forecast state vector to prepare the ensembles. In the second method, we use an adaptive error estimation technique based on the innovation diagnostics to estimate this error parameter within the assimilation framework. The results from a real and a set of synthetic experiments indicate that the EnOI scheme can provide better results when an optimal EnKF is not identified, but performs worse than the ensemble filter when the true error characteristics are known. Furthermore, while the adaptive approach is able to reduce the sensitivity to the fractional error parameter affecting the first (non-adaptive) approach, results are usually worse at ungauged locations with the former.

  • PDF

흉부 CT 영상에서 비소세포폐암 환자의 재발 예측을 위한 종양 내외부 영상 패치 기반 앙상블 학습 (Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image)

  • 이예슬;조아현;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2021
  • In this paper, we propose a classification model based on convolutional neural network(CNN) for predicting 2-year recurrence in non-small cell lung cancer(NSCLC) patients using preoperative chest CT images. Based on the region of interest(ROI) defined as the tumor internal and external area, the input images consist of an intratumoral patch, a peritumoral patch and a peritumoral texture patch focusing on the texture information of the peritumoral patch. Each patch is trained through AlexNet pretrained on ImageNet to explore the usefulness and performance of various patches. Additionally, ensemble learning of network trained with each patch analyzes the performance of different patch combination. Compared with all results, the ensemble model with intratumoral and peritumoral patches achieved the best performance (ACC=98.28%, Sensitivity=100%, NPV=100%).