• 제목/요약/키워드: Ensemble Machine learning

검색결과 234건 처리시간 0.027초

실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구 (A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics)

  • 구진희
    • 융합정보논문지
    • /
    • 제8권1호
    • /
    • pp.201-206
    • /
    • 2018
  • 최근 인공지능을 구현하기 위한 기술들이 보편화되면서 특히, 기계 학습이 폭넓게 사용되고 있다. 기계 학습은 대량의 데이터를 수집하고 일괄적으로 처리하며 최종 조치를 취할 수 있는 통찰력을 제공하나, 작업의 효과가 즉시 학습 과정에 통합되지는 않는다. 본 연구에서는 비즈니스의 큰 이슈로서 실시간 데이터 분석의 성능을 개선하기 위한 적응형 학습 모델을 제안하였다. 적응형 학습은 데이터세트의 복잡성에 적응하여 앙상블을 생성하고 알고리즘은 샘플링 할 최적의 데이터 포인트를 결정하는데 필요한 데이터를 사용한다. 6개의 표준 데이터세트를 대상으로 한 실험에서 적응형 학습 모델은 학습 시간과 정확도에서 분류를 위한 단순 기계 학습 모델보다 성능이 우수하였다. 특히 서포트 벡터 머신은 모든 앙상블의 후단에서 우수한 성능을 보였다. 적응형 학습 모델은 시간이 지남에 따라 다양한 매개변수들의 변화에 대한 추론을 적응적으로 업데이트가 필요한 문제에 폭넓게 적용될 수 있을 것으로 기대한다.

대용량 자료에 대한 서포트 벡터 회귀에서 모수조절 (Parameter Tuning in Support Vector Regression for Large Scale Problems)

  • 류지열;곽민정;윤민
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.15-21
    • /
    • 2015
  • 커널에 대한 모수의 조절은 서포트 벡터 기계의 일반화 능력에 영향을 준다. 이와 같이 모수들의 적절한 값을 결정하는 것은 종종 어려운 작업이 된다. 서포트 벡터 회귀에서 이와 같은 모수들의 값을 결정하기 위한 부담은 앙상블 학습을 사용함으로써 감소시킬 수 있다. 그러나 대용량의 자료에 대한 문제에 직접적으로 적용하기에는 일반적으로 시간 소모적인 방법이다. 본 논문에서 서포트 벡터 회귀의 모수 조절에 대한 부담을 감소하기 위하여 원래 자료집합을 유한개의 부분집합으로 분해하는 방법을 제안하였다. 제안하는 방법은 대용량의 자료들인 경우와 특히 불균등 자료 집합에서 효율적임을 보일 것이다.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination

  • Sim, YuJeong;Moon, Seok-Jae;Lee, Jong-Youg
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.268-273
    • /
    • 2021
  • In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.

앙상블 조합 방법에 따른 주가 예측 성능 비교 (Comparison of Stock Price Forecasting Performance by Ensemble Combination Method)

  • 양현성;박준;소원호;심춘보
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.524-527
    • /
    • 2022
  • 본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.

머신러닝 및 딥러닝 모델의 스태킹 앙상블을 이용한 단기 전력수요 예측에 관한 연구 (A Study on Short-Term Electricity Demand Prediction Using Stacking Ensemble of Machine Learning and Deep Learning Ensemble Models)

  • 이정일;김동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.566-569
    • /
    • 2021
  • 전력수요는 월, 요일 및 시간의 계절성(Seasonality)을 보이는 데이터이다. 각 계절성에 따라 특성이 다르기 때문에, 전력수요를 예측하기 위해서는 계절성의 특성을 고려한 다양한 모델을 선정하고, 병합하는 방법이 필요하다. 본 연구에서는 전력수요의 계절성을 고려한 다양한 예측모델을 병합하여 이용할 수 있도록 스태킹 앙상블 적용하고 실험결과를 기술한다. 또한, 162개 도시의 기상 데이터와 인구 데이터를 예측에 이용하는 방법, Regression 모델과 Time-series모델에 입력하는 특징(Feature)의 전처리 방법, 베이지안 최적화를 이용한 머신러닝 및 딥러닝 모델의 하이퍼파라메터 최적화 방법을 제시한다.

로지스틱 회귀모형과 머신러닝 모형을 활용한 주요산업의 부산 지역총생산 및 고용 효과 예측 (Prediction on Busan's Gross Product and Employment of Major Industry with Logistic Regression and Machine Learning Model)

  • 이재득
    • 무역학회지
    • /
    • 제47권2호
    • /
    • pp.69-88
    • /
    • 2022
  • This paper aims to predict Busan's regional product and employment using the logistic regression models and machine learning models. The following are the main findings of the empirical analysis. First, the OLS regression model shows that the main industries such as electricity and electronics, machine and transport, and finance and insurance affect the Busan's income positively. Second, the binomial logistic regression models show that the Busan's strategic industries such as the future transport machinery, life-care, and smart marine industries contribute on the Busan's income in large order. Third, the multinomial logistic regression models show that the Korea's main industries such as the precise machinery, transport equipment, and machinery influence the Busan's economy positively. And Korea's exports and the depreciation can affect Busan's economy more positively at the higher employment level. Fourth, the voting ensemble model show the higher predictive power than artificial neural network model and support vector machine models. Furthermore, the gradient boosting model and the random forest show the higher predictive power than the voting model in large order.

머신러닝 스태킹 앙상블을 이용한 자율주행 자동차 RADAR 성능 향상 (Enhancing Autonomous Vehicle RADAR Performance Prediction Model Using Stacking Ensemble)

  • 장시연;최혜림;오윤주
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.21-28
    • /
    • 2024
  • 레이다는 자율주행 차에 있어 필수적인 센서 부품으로, 레이다가 활용되는 시장은 점차 커지고 있으며 제품 종류도 다양해지고 있다. 본 연구에서는 평가 공정에서부터 레이다의 불량 여부를 예측해 자율주행의 안정성과 효율성을 높일 수 있도록 성능 예측 모델을 구축하고 평가하였다. 레이더 공정 과정의 39607개 입력 데이터로 모델을 학습하였으며, 결과적으로 17개 모델을 스태킹 앙상블했을 때 Meta Ridge 모델이 가장 높은 학습률을 나타내는 것을 확인하였다. 이러한 연구 결과가 제품의 불량을 공정 단계에서 우선 예측해 수율을 극대화하고 불량으로 인한 제품 폐기 비용을 감축하는 데 도움이 될 것으로 기대 한다.

협업필터링과 스태킹 모형을 이용한 상품추천시스템 개발 (Development of Product Recommender System using Collaborative Filtering and Stacking Model)

  • 박성종;김영민;안재준
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.83-90
    • /
    • 2019
  • 사람들은 자신의 더 나은 선택을 위하여 끊임없이 노력한다. 이러한 이유로 추천시스템이 개발되었으며, 1990년대 초반부터 계속해서 발전하고 있다. 그 중, 협업필터링 기법은 추천시스템 분야에서 우수한 성능을 보였으며, 기계학습이 등장하면서 기계학습을 이용한 추천시스템에 관한 연구가 활발히 진행되었다. 본 연구는 앙상블 방법 중에서 스태킹 모형을 사용하여 추천시스템을 구축하며, 실제 고객의 상품 구매 데이터를 활용하여 협업필터링과 기계학습 기반 스태킹 모형으로 추천시스템을 개발하였다. 제시한 모형의 추천 성능은 기존의 협업필터링과 기계학습 기반 추천시스템과 비교하여 모형의 우수성을 확인하며, 연구결과는 스태킹 모형을 이용한 추천시스템 모형의 추천 성능이 개선됨을 확인하였다. 향후 본 연구에서 제안한 모형은 개인이나 기업이 더 나은 선택을 하여 상품을 추천할 때 도움을 줄 것으로 기대한다.

머신러닝을 이용한 공연문화예술 개인화 장르 추천 시스템 (A Personalized Recommendation System Using Machine Learning for Performing Arts Genre)

  • 김형수;박예린;이정민
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.31-45
    • /
    • 2019
  • 공연문화예술 시장의 확대에도 불구하고, 중소규모 공연장은 소비자의 정보 접근성이 좋지 않아 어려움을 겪고 있다. 본 연구는 중소규모 공연장의 마케팅 역량을 강화할 수 있는 하나의 대안으로써 머신러닝 기반의 장르 추천 시스템을 제시하고자 한다. 국내 한 공연장의 고객 마스터 DB와 거래이력 DB를 활용하여 고객당 3개의 장르를 추천하는 5개의 추천 시스템을 개발하였다. 추천시점 이후 1년 동안의 실제 공연구매 이력을 바탕으로 추천 시스템의 성능을 비교하여 최적의 추천시스템을 제안하였다. 분석 결과, 단일 예측모형보다는 앙상블 모형 기반의 추천시스템이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 공연문화예술 분야에는 일천했던 개인화 추천 기법을 적용했고, 분석 결과 공연문화예술 분야에서도 충분히 활용할 만한 가치가 있음을 시사하고 있다.