• Title/Summary/Keyword: Ensemble Learning

Search Result 380, Processing Time 0.033 seconds

Analysis and Application of Power Consumption Patterns for Changing the Power Consumption Behaviors (전력소비행위 변화를 위한 전력소비패턴 분석 및 적용)

  • Jang, MinSeok;Nam, KwangWoo;Lee, YonSik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.603-610
    • /
    • 2021
  • In this paper, we extract the user's power consumption patterns, and model the optimal consumption patterns by applying the user's environment and emotion. Based on the comparative analysis of these two patterns, we present an efficient power consumption method through changes in the user's power consumption behavior. To extract significant consumption patterns, vector standardization and binary data transformation methods are used, and learning about the ensemble's ensemble with k-means clustering is applied, and applying the support factor according to the value of k. The optimal power consumption pattern model is generated by applying forced and emotion-based control based on the learning results for ensemble aggregates with relatively low average consumption. Through experiments, we validate that it can be applied to a variety of windows through the number or size adjustment of clusters to enable forced and emotion-based control according to the user's intentions by identifying the correlation between the number of clusters and the consistency ratios.

A Study on the Prediction of Cabbage Price Using Ensemble Voting Techniques (앙상블 Voting 기법을 활용한 배추 가격 예측에 관한 연구)

  • Lee, Chang-Min;Song, Sung-Kwang;Chung, Sung-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Vegetables such as cabbage are greatly affected by natural disasters, so price fluctuations increase due to disasters such as heavy rain and disease, which affects the farm economy. Various efforts have been made to predict the price of agricultural products to solve this problem, but it is difficult to predict extreme price prediction fluctuations. In this study, cabbage prices were analyzed using the ensemble Voting technique, a method of determining the final prediction results through various classifiers by combining a single classifier. In addition, the results were compared with LSTM, a time series analysis method, and XGBoost and RandomForest, a boosting technique. Daily data was used for price data, and weather information and price index that affect cabbage prices were used. As a result of the study, the RMSE value showing the difference between the actual value and the predicted value is about 236. It is expected that this study can be used to select other time series analysis research models such as predicting agricultural product prices

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Parameter Tuning in Support Vector Regression for Large Scale Problems (대용량 자료에 대한 서포트 벡터 회귀에서 모수조절)

  • Ryu, Jee-Youl;Kwak, Minjung;Yoon, Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In support vector machine, the values of parameters included in kernels affect strongly generalization ability. It is often difficult to determine appropriate values of those parameters in advance. It has been observed through our studies that the burden for deciding the values of those parameters in support vector regression can be reduced by utilizing ensemble learning. However, the straightforward application of the method to large scale problems is too time consuming. In this paper, we propose a method in which the original data set is decomposed into a certain number of sub data set in order to reduce the burden for parameter tuning in support vector regression with large scale data sets and imbalanced data set, particularly.

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

Improvement of Vocal Detection Accuracy Using Convolutional Neural Networks

  • You, Shingchern D.;Liu, Chien-Hung;Lin, Jia-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.729-748
    • /
    • 2021
  • Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.

A Study on the Improvement of Submarine Detection Based on Mast Images Using An Ensemble Model of Convolutional Neural Networks (컨볼루션 신경망의 앙상블 모델을 활용한 마스트 영상 기반 잠수함 탐지율 향상에 관한 연구)

  • Jeong, Miae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Due to the increasing threats of submarines from North Korea and other countries, ROK Navy should improve the detection capability of submarines. There are two ways to detect submarines : acoustic detection and non-acoustic detection. Since the acoustic-detection way has limitations in spite of its usefulness, it should have the complementary way. The non-acoustic detection is the way to detect submarines which are operating mast sets such as periscopes and snorkels by non-acoustic sensors. So, this paper proposes a new submarine non-acoustic detection model using an ensemble of Convolutional Neural Network models in order to automate the non-acoustic detection. The proposed model is trained to classify targets as 4 classes which are submarines, flag buoys, lighted buoys, small boats. Based on the numerical study with 10,287 images, we confirm the proposed model can achieve 91.5 % test accuracy for the non-acoustic detection of submarines.