• 제목/요약/키워드: Enolase-1

검색결과 70건 처리시간 0.018초

뇌졸중에서 클로로겐산 투여에 의한 γ-enolase 감소 완화 효과 (Alleviation of γ-enolase decrease by the chlorogenic acid administration in the stroke animal model)

  • 강주빈;;고민서;고필옥
    • 대한수의학회지
    • /
    • 제63권1호
    • /
    • pp.6.1-6.9
    • /
    • 2023
  • Stroke is a major cause of death and long-term disability. Chlorogenic acid is a phenolic compound with a potent neuroprotective effect. γ-enolase is a phosphopyruvate hydratase found in mature neurons and plays an important role in neuronal survival. This study investigated whether chlorogenic acid regulates the expression of γ-enolase during cerebral ischemia. Middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemia. Adult male rats were used and chlorogenic acid (30 mg/kg) or phosphate buffered saline (PBS) was injected intraperitoneally 2 hours after MCAO surgery. Cerebral cortical tissues were collected 24 hours after MCAO surgery. Our proteomic approach identified the reduction of γ-enolase caused by MCAO damage and the mitigation of this reduction by chlorogenic acid treatment. Results of reverse transcription-polymerase chain reaction and Western blot analyses showed a decrease in γ-enolase expression in the PBS-treated MCAO group. However, chlorogenic acid treatment attenuated this decrease. Results of immunofluorescence staining showed the change of γ-enolase by chlorogenic acid treatment. These results demonstrated that chlorogenic acid regulates the γ-enolase expression during MCAO-induced ischemia. Therefore, we suggest that chlorogenic acid mediates the neuroprotective function by regulating the γ-enolase expression in cerebral ischemia and may be used as a therapeutic agent for brain diseases including stroke.

Identification of Regulatory Role of KRAB Zinc Finger Protein ZNF 350 and Enolase-1 in RE-IIBP Mediated Transcriptional Repression

  • Kim, Ji-Young;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.12-16
    • /
    • 2009
  • One of the WHSC1/MMSET/NSD2 variant RE-IIBP is a histone H3-K27 methyltransferase with transcriptional repression activity. Overexpression of RE-IIBP in various types of leukemia suggests it's role in leukemogenesis. Here we identify two proteins, KRAB zinc finger protein ZNF 350 and enolase-1 as RE-IIBP interacting proteins by yeast two-hybrid screening and confirmed direct interaction in vivo and in vitro. Both proteins have been known for their role in transcriptional repression. Reporter assays using transient transfection demonstrated that both ZNF 350 and enolase-1 proteins synergistically repressed transcription with RE-IIBP, respectively. These results indicate both proteins have roles in RE-IIBP mediated transcriptional repression by involving co-repressor complex.

Enhanced Secretion of Cell Wall Bound Enolase into Culture Medium by the sool-l Mutation of Saccharomyces cerevisiae

  • Kim, Ki-Hyun;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.248-252
    • /
    • 2004
  • In order to identify the protein(s) secreted into culture medium by the sool-l/retl-l mutation of Saccharomyces cerevisiae, proteins from the culture medium of cells grown at permissive (28$^{\circ}C$) and non-permissive temperatures (37$^{\circ}C$), were analyzed. Comparison of protein bands separated by SDS-PAGE identified a prominent band of 47-kDa band from a mutant grown at 37$^{\circ}C$. N-terminal amino acid sequencing of this 47-kDa protein showed high identity with enolases 1 and 2. Western blot analysis revealed that most of the cell wall-bound enolase was released into the culture medium of the mutant grown at 37$^{\circ}C$, some of which were separated as those with lower molecular weights. Our results, presented here, indicate the impairment of cell wall enolase biogenesis and assembly by the sool-l/retl-l mutation of S. cerevisiae.

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.43.1-43.13
    • /
    • 2024
  • Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.

연쇄구균증 항원-enolase, GAPDH, sagA, piaA에 대한 재조합 고스트 박테리아 백신의 생산 최적화 (Evaluation of Optimal Condition for Recombinant Bacterial Ghost Vaccine Production with Four Different Antigens of Streptococcus iniae-enolase, GAPDH, sagA, piaA)

  • 라채훈;김영진;손창우;정대영;김성구
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.845-851
    • /
    • 2009
  • 본 연구는 5-L 발효기를 이용하여 재조합 고스트 박테리아(E.coli $DH5{\alpha}$/ pHCE-InaN-(enolase, GAPDH, sagA or piaA)-ghost 37 SDM) 백신의 산업화를 위해 탄소원 공급조건, 교반속도, 산소공급 조건등의 최적 배양조건과 고스트 박테리아 발현 유도를 위한 온도조절 시점과 그에 따른 발현효율 최적화를 조사하기 위해 수행하였다. 각각 다른 4종의 항원 유전자를 보유한 고스트 박테리아를 LB 배지를 이용하여 배양한 결과 모두 1 g / 1 glucose, 300 rpm, 1vvm에서 최대 균주 성장을 나타내었다. 고스트 박테리아 생성 효율의 경우 초기 대수증식기(OD$_{600}$=1.0)에서 고스트 발현을 유도했을 때 각각 최대효율인 99.99%를 나타내었으나 증기 대수증식기(OD$_{600}$=2.0)와 말기 대수증식기 (OD$_{600}$=3.0)에서는 고스트 박테리아 생성이 낮은 효율을 나타내었다. 또한 SDS-PAGE 와 western blot를 이용하여 각각 다른 4종의 항원 단백질 발현 여주를 확인한 결과 enolase (78kda), GAPDH (67kda),sagA(26kDa), piaA(26kDa)에서 항원 단백질 band를 확인할 수 있었다. 따라서 본 연구결과 확립된 배양 조건과 발현효율 최적화 조건은 연쇄구균증 질병에 대해 E.coli를 이용한 고스트 박테리아 백신이 양식 산업에 있어 상업적으로 유용한 백신의 최적생산을 위해 사용 될 수 있을 것으로 사료된다.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Serum neuron specific enolase is increased in pediatric acute encephalitis syndrome

  • Pratamastuti, Dian;Gunawan, Prastiya Indra;Saharso, Darto
    • Clinical and Experimental Pediatrics
    • /
    • 제60권9호
    • /
    • pp.302-306
    • /
    • 2017
  • Purpose: This study aimed to investigate whether serum neuron-specific enolase (NSE) was expressed in acute encephalitis syndrome (AES) that causes neuronal damage in children. Methods: This prospective observational study was conducted in the pediatric neurology ward of Soetomo Hospital. Cases of AES with ages ranging from 1 month to 12 years were included. Cases that were categorized as simple and complex febrile seizures constituted the non-AES group. Blood was collected for the measurement of NSE within 24 hours of hemodynamic stabilization. The median NSE values of both groups were compared by using the Mann-Whitney U test. All statistical analyses were performed with SPSS version 12 for Windows. Results: In the study period, 30 patients were enrolled. Glasgow Coma Scale mostly decreased in the AES group by about 40% in the level ${\leq}8$. All patients in the AES group suffered from status epilepticus and 46.67% of them had body temperature >$40^{\circ}C$. Most of the cases in the AES group had longer duration of stay in the hospital. The median serum NSE level in the AES group was 157.86 ng/mL, and this value was significantly higher than that of the non-AES group (10.96 ng/mL; P<0.05). Conclusion: AES cases showed higher levels of serum NSE. These results indicate that serum NSE is a good indicator of neuronal brain injury.

급성 글루포시네이트 암모늄 중독환자에서 혈중 Neuron specific enolase 수치와 경련발생 간의 연관성 (Relationship between Serum Neuron Specific Enolase Level and Seizure in Patients with Acute Glufosinate Ammonium Poisoning)

  • 안교진;이윤석;차용성;김현
    • 대한임상독성학회지
    • /
    • 제16권1호
    • /
    • pp.49-56
    • /
    • 2018
  • Purpose: Glufosinate ammonium poisoning can cause seizures, even after a symptom-free period. This study was conducted to evaluate the relationship between serum neuron specific enolase (NSE) level and the occurrence of seizures in patients with acute glufosinate ammonium poisoning. Methods: For this retrospective observational study, data from patients diagnosed with acute glufosinate ammonium poisoning were collected between January 2016 and June 2016. Serum NSE was measured within 2 hours of arrival at the emergency department. The patients were divided into a seizure group and a non-seizure group. Results: The seizure group included eight of the 15 total patients (53.3%). The serum NSE level was significantly higher in the seizure group than in the non-seizure group ($32.4{\pm}11.9ng/mL$ vs. $19.5{\pm}5ng/mL$, p=0.019). The amount of glufosinate ingested and initial and peak serum ammonia levels were significantly higher in the seizure group than in the non-seizure group. There was no significant difference in the area under the curve of the serum NSE level or the initial and peak serum ammonia levels in terms of predicting the occurrence of seizures. Conclusion: In acute glufosinate poisoning, initial serum NSE levels may help in prediction of seizures.

Proteomic Analysis of Colonic Mucosal Tissue from Tuberculous and Ulcerative Colitis Patients

  • Kwon, Seong-Chun;Won, Kyung-Jong;Jung, Seoung-Hyo;Lee, Kang-Pa;Lee, Dong-Youb;Park, Eun-Seok;Kim, Bok-Yung;Cheon, Gab-Jin;Han, Koon-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.193-198
    • /
    • 2012
  • Changes in the expression profiles of specific proteins leads to serious human diseases, including colitis. The proteomic changes related to colitis and the differential expression between tuberculous (TC) and ulcerative colitis (UC) in colon tissue from colitis patients has not been defined. We therefore performed a proteomic analysis of human TC and UC mucosal tissue. Total protein was obtained from the colon mucosal tissue of normal, TC, and UC patients, and resolved by 2-dimensional electrophoresis (2-DE). The results were analyzed with PDQuest using silver staining. We used matrix-assisted laser desorption ionization time-of-flight/time-of-flight spectrometry (MALDI TOF/TOF) to identify proteins differentially expressed in TC and UC. Of the over 1,000 proteins isolated, three in TC tissue and two in UC tissue displayed altered expression when compared to normal tissue. Moreover, two proteins were differentially expressed in a comparative analysis between TC and UC. These were identified as mutant ${\beta}$-actin, ${\alpha}$-enolase and Charcot-Leyden crystal protein. In particular, the expression of ${\alpha}$-enolase was significantly greater in TC compared with normal tissue, but decreased in comparison to UC, implying that ${\alpha}$-enolase may represent a biomarker for differential diagnosis of TC and UC. This study therefore provides a valuable resource for the molecular and diagnostic analysis of human colitis.