• 제목/요약/키워드: Enolase 3

검색결과 49건 처리시간 0.25초

Candida albicans KNIH10으로부터 Enolase의 분리 및 면역진단의 응용 (Purification of Enolase from Candida albicans KNIH10 Isolated in Korea and Application of Immunological Diagnosis)

  • 박용춘;유재일;이영선;신종희;김봉수
    • 대한미생물학회지
    • /
    • 제35권2호
    • /
    • pp.141-147
    • /
    • 2000
  • We purified enolase from Candida albicans KNIH10 strain which was isolated from a clinical specimen in Korea. The purified enolase was used to detect anti-Candida antibodies in sera of patients with invasive candidiasis. For purification of enolase from the crude extract prepared by French pressure at 20,000 PSI, the fast performance liquid chromatography (FPLC) using DEAE-sepharose column was used. The elutes at $0.3{\sim}0.4\;M$ NaCl in FPLC was purified with homogenity in SDS-PAGE and its enzymatic activity was confirmed in sera of invasive candidiasis with candidemia patient by immunoblotting. The purified enolase indicated no signal (100% specificity) in 40 normal human sera and 75% (6/8) sensitivity in sera of candidemic patients with suspicious invasive candidiasis by immunoblotting.

  • PDF

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.43.1-43.13
    • /
    • 2024
  • Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.

미세호기성 조건에서 Escherichia coli 에놀라아제의 발현에 있어서 RNase G의 역할에 대한 연구 (Studies on the Functional Role of RNase G in the Regulation of Escherichia coli Enolase Expression Under Microaerobic Conditions)

  • 심세훈;김용학;심민지;임보람;이강석
    • 미생물학회지
    • /
    • 제46권3호
    • /
    • pp.229-232
    • /
    • 2010
  • 에놀라아제는 대부분의 생명체에서 에너지 대사에 중추적인 기능을 하는 해당과정에 관여하는 효소이며, Escherichia coli에서 RNA 가공 및 분해에 중심적인 역할을 하는 RNase E와 PNPase, Helicase와 함께 RNA 분해 복합체를 형성한다고 알려져 있다. E. coli에서 에놀라아제의 mRNA는 RNase E의 동족체인 RNase G에 의해 잘려서 분해되어 조절 된다고 알려져있다. 산소가 없는 환경에서 과발현되는 것으로 알려진 에놀라아제의 발현에 있어서 RNase G의 역할을 알아보기 위하여, 연구를 수행한 결과, 미세호기성 조건에서는 에놀라아제와 RNase G의 발현양 사이에는 상관관계가 밝혀내었다. 이러한 연구결과는 미세호기성 조건에서는 RNase G 이외에 에놀라아제의 조절에 기여하는 다른 기작이 있을 수 있다는 것을 시사한다.

Enhanced Secretion of Cell Wall Bound Enolase into Culture Medium by the sool-l Mutation of Saccharomyces cerevisiae

  • Kim, Ki-Hyun;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.248-252
    • /
    • 2004
  • In order to identify the protein(s) secreted into culture medium by the sool-l/retl-l mutation of Saccharomyces cerevisiae, proteins from the culture medium of cells grown at permissive (28$^{\circ}C$) and non-permissive temperatures (37$^{\circ}C$), were analyzed. Comparison of protein bands separated by SDS-PAGE identified a prominent band of 47-kDa band from a mutant grown at 37$^{\circ}C$. N-terminal amino acid sequencing of this 47-kDa protein showed high identity with enolases 1 and 2. Western blot analysis revealed that most of the cell wall-bound enolase was released into the culture medium of the mutant grown at 37$^{\circ}C$, some of which were separated as those with lower molecular weights. Our results, presented here, indicate the impairment of cell wall enolase biogenesis and assembly by the sool-l/retl-l mutation of S. cerevisiae.

Identification of Regulatory Role of KRAB Zinc Finger Protein ZNF 350 and Enolase-1 in RE-IIBP Mediated Transcriptional Repression

  • Kim, Ji-Young;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.12-16
    • /
    • 2009
  • One of the WHSC1/MMSET/NSD2 variant RE-IIBP is a histone H3-K27 methyltransferase with transcriptional repression activity. Overexpression of RE-IIBP in various types of leukemia suggests it's role in leukemogenesis. Here we identify two proteins, KRAB zinc finger protein ZNF 350 and enolase-1 as RE-IIBP interacting proteins by yeast two-hybrid screening and confirmed direct interaction in vivo and in vitro. Both proteins have been known for their role in transcriptional repression. Reporter assays using transient transfection demonstrated that both ZNF 350 and enolase-1 proteins synergistically repressed transcription with RE-IIBP, respectively. These results indicate both proteins have roles in RE-IIBP mediated transcriptional repression by involving co-repressor complex.

연쇄구균증 항원-enolase, GAPDH, sagA, piaA에 대한 재조합 고스트 박테리아 백신의 생산 최적화 (Evaluation of Optimal Condition for Recombinant Bacterial Ghost Vaccine Production with Four Different Antigens of Streptococcus iniae-enolase, GAPDH, sagA, piaA)

  • 라채훈;김영진;손창우;정대영;김성구
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.845-851
    • /
    • 2009
  • 본 연구는 5-L 발효기를 이용하여 재조합 고스트 박테리아(E.coli $DH5{\alpha}$/ pHCE-InaN-(enolase, GAPDH, sagA or piaA)-ghost 37 SDM) 백신의 산업화를 위해 탄소원 공급조건, 교반속도, 산소공급 조건등의 최적 배양조건과 고스트 박테리아 발현 유도를 위한 온도조절 시점과 그에 따른 발현효율 최적화를 조사하기 위해 수행하였다. 각각 다른 4종의 항원 유전자를 보유한 고스트 박테리아를 LB 배지를 이용하여 배양한 결과 모두 1 g / 1 glucose, 300 rpm, 1vvm에서 최대 균주 성장을 나타내었다. 고스트 박테리아 생성 효율의 경우 초기 대수증식기(OD$_{600}$=1.0)에서 고스트 발현을 유도했을 때 각각 최대효율인 99.99%를 나타내었으나 증기 대수증식기(OD$_{600}$=2.0)와 말기 대수증식기 (OD$_{600}$=3.0)에서는 고스트 박테리아 생성이 낮은 효율을 나타내었다. 또한 SDS-PAGE 와 western blot를 이용하여 각각 다른 4종의 항원 단백질 발현 여주를 확인한 결과 enolase (78kda), GAPDH (67kda),sagA(26kDa), piaA(26kDa)에서 항원 단백질 band를 확인할 수 있었다. 따라서 본 연구결과 확립된 배양 조건과 발현효율 최적화 조건은 연쇄구균증 질병에 대해 E.coli를 이용한 고스트 박테리아 백신이 양식 산업에 있어 상업적으로 유용한 백신의 최적생산을 위해 사용 될 수 있을 것으로 사료된다.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Proteomic Analysis of Colonic Mucosal Tissue from Tuberculous and Ulcerative Colitis Patients

  • Kwon, Seong-Chun;Won, Kyung-Jong;Jung, Seoung-Hyo;Lee, Kang-Pa;Lee, Dong-Youb;Park, Eun-Seok;Kim, Bok-Yung;Cheon, Gab-Jin;Han, Koon-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.193-198
    • /
    • 2012
  • Changes in the expression profiles of specific proteins leads to serious human diseases, including colitis. The proteomic changes related to colitis and the differential expression between tuberculous (TC) and ulcerative colitis (UC) in colon tissue from colitis patients has not been defined. We therefore performed a proteomic analysis of human TC and UC mucosal tissue. Total protein was obtained from the colon mucosal tissue of normal, TC, and UC patients, and resolved by 2-dimensional electrophoresis (2-DE). The results were analyzed with PDQuest using silver staining. We used matrix-assisted laser desorption ionization time-of-flight/time-of-flight spectrometry (MALDI TOF/TOF) to identify proteins differentially expressed in TC and UC. Of the over 1,000 proteins isolated, three in TC tissue and two in UC tissue displayed altered expression when compared to normal tissue. Moreover, two proteins were differentially expressed in a comparative analysis between TC and UC. These were identified as mutant ${\beta}$-actin, ${\alpha}$-enolase and Charcot-Leyden crystal protein. In particular, the expression of ${\alpha}$-enolase was significantly greater in TC compared with normal tissue, but decreased in comparison to UC, implying that ${\alpha}$-enolase may represent a biomarker for differential diagnosis of TC and UC. This study therefore provides a valuable resource for the molecular and diagnostic analysis of human colitis.

급성 글루포시네이트 암모늄 중독환자에서 혈중 Neuron specific enolase 수치와 경련발생 간의 연관성 (Relationship between Serum Neuron Specific Enolase Level and Seizure in Patients with Acute Glufosinate Ammonium Poisoning)

  • 안교진;이윤석;차용성;김현
    • 대한임상독성학회지
    • /
    • 제16권1호
    • /
    • pp.49-56
    • /
    • 2018
  • Purpose: Glufosinate ammonium poisoning can cause seizures, even after a symptom-free period. This study was conducted to evaluate the relationship between serum neuron specific enolase (NSE) level and the occurrence of seizures in patients with acute glufosinate ammonium poisoning. Methods: For this retrospective observational study, data from patients diagnosed with acute glufosinate ammonium poisoning were collected between January 2016 and June 2016. Serum NSE was measured within 2 hours of arrival at the emergency department. The patients were divided into a seizure group and a non-seizure group. Results: The seizure group included eight of the 15 total patients (53.3%). The serum NSE level was significantly higher in the seizure group than in the non-seizure group ($32.4{\pm}11.9ng/mL$ vs. $19.5{\pm}5ng/mL$, p=0.019). The amount of glufosinate ingested and initial and peak serum ammonia levels were significantly higher in the seizure group than in the non-seizure group. There was no significant difference in the area under the curve of the serum NSE level or the initial and peak serum ammonia levels in terms of predicting the occurrence of seizures. Conclusion: In acute glufosinate poisoning, initial serum NSE levels may help in prediction of seizures.

Overexpression of Neuron-Specific Enolase as a Prognostic Factor in Patients with Gastric Cancer

  • Park, Taejin;Lee, Young-Joon;Jeong, Sang-Ho;Choi, Sang-Kyung;Jung, Eun-Jung;Ju, Young-tae;Jeong, Chi-Young;Park, Miyeong;Hah, Young-Sool;Yoo, Jiyun;Ha, Woo-Song;Hong, Soon-Chan;Ko, Gyung Hyuck
    • Journal of Gastric Cancer
    • /
    • 제17권3호
    • /
    • pp.228-236
    • /
    • 2017
  • Purpose: Enolase is a cytoplasmic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate in the glycolytic pathway. The aim of this study was to investigate whether the overexpression of neuron-specific enolase (NSE) can serve as a prognostic factor in patients with gastric cancer (GC). Materials and Methods: To assess its prognostic value in GC, NSE expression was measured by immunohistochemistry in a clinically annotated tissue microarray comprising of 327 human GC specimens. Cytoplasmic NSE expression was scored from 0 to 4, reflecting the percentage of NSE-positive cells. Results: In terms of histology as per the World Health Organization criteria (P=0.34), there were no differences between the NSE overexpression (NSE-OE) and NSE underexpression (NSE-UE) groups. The NSE-OE group showed a significantly lower rate of advanced GC (P<0.01), lymph node metastasis (P=0.01), advanced stage group (P<0.01), cancer-related death (P<0.01), and cancer recurrence (P<0.01). Additionally, a Kaplan-Meier survival analysis revealed that the NSE-OE group had longer cumulative survival times than the NSE-UE group (log-rank test, P<0.01). However, there were no significant differences in the serum levels of NSE expression in patients with GC and healthy volunteers (P=0.28). Conclusions: Patients with NSE overexpressing GC tissues showed better prognostic results, implying that NSE could be a candidate biomarker of GC.