• Title/Summary/Keyword: Enhanced Direction

Search Result 447, Processing Time 0.026 seconds

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Proposal of enhanced treatment process based on actual pilot plant for removal of micropharmaceuticals in sewage treatment plants

  • Lee, Shun-hwa;Park, Yun-kyung;Lee, Miran;Lee, Byung-dae
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.588-596
    • /
    • 2020
  • This study was carried out to increase the treatment efficiency through the improvement of the conventional biological process, and to propose the optimal treatment direction. The optimal treatment conditions were derived based on the results of the spike damage tests in each single process. The removal efficiency of micropharmaceuticals was further increased when an ozone treatment process was added to the biological process compared to the single process. The soil and activated carbon adsorption process was introduced in the post-treatment to remove the micropharmaceutical residues, and the removal efficiency of the pharmaceduticals in the final effluent was more than 85% in spike damage experiment. In particular, the continuous process of biological treatment-ozone-adsorption could ensure the stable treatment of micropharmaceuticals, which had not been efficiently removed in the single process, as it showed more than 80% removal efficiency. Therefore, it is expected that the addition of the ozone oxidation and activated carbon adsorption process to the existing sewage treatment facilities can contribute to the efficient removal of micropharmaceuticals.

A Mixing Characteristic of De-NOx Reducing Agent for Flue Gas in Thermal Power Generation (화력발전 배가스 탈질 환원제의 혼합특성)

  • Choi, H.S.;Kim, K.T.;Kim, S.J.;Jeong, S.H.;Song, Y.H.;Hong, S.H.;Lee, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.79-85
    • /
    • 2006
  • In this study, to increase the mixing between flue gas and reducing agent, new shapes of $NH_3$ ejection nozzles are designed and experimentally and numerically tested. The nozzles have six holes perpendicular to the ambient flue gas flow and the tilting angle between direction of ambient flow and the hole axis is varied. To evaluate the mixing efficiency of the proposed nozzles, numerical and experimental tests are applied to several flow conditions comparing with single hole nozzle, which is commonly used in conventional SCR process. From the results the nozzle with tilted multi-holes has the large region of high turbulent intensity compared with conventional single hole nozzle. This is originated from the high vorticity near the upstream of the jet flow issuing from the hole. The high turbulent intensity and vorticity magnitude lead to enhanced mixing between flue gas and reducing agent. Hence, the most suitable moral ratio between NOx and reducing agent for the catalytic reaction can be obtained on behalf of the intensified scalar mixing within shorter physical mixing length.

  • PDF

Dyeability and Functionality of Silk Fabrics treated with Persimmon Juice (감즙에 의한 견직물의 염색성과 기능성)

  • Huh, Man-Woo;Bae, Jung-Sook;An, Sun-Young
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.1036-1044
    • /
    • 2008
  • This research from analyzing dyed silk fabrics treated with persimmon juice by padding concludes as follows : The add on is increased as the number of padding increase and the color of the dyed fabrics holds red-yellow colors which has low brightness and high chromatic colors. The fabrics dyed with persimmon juice have properties such as 2nd grade of light fastness, 4~5th grade of perspiration fastness and rubbing fastness, and 3~4th grade of washing fastness. The dyed fabrics exposed to UV light have deeper yellow-red color than things exposed to sunlight. The silk fabrics treated premordants have shown strong yellow colors, especially the fabrics added Fe mordant have shown greenish red-yellow colors. As the padding times of dyeing with persimmon juice are increased, strength and water-repellent property are enhanced along warp and weft direction respectively but anti-crease property is decreased. Also, the dyed fabrics have good antibacterial activity and deodorization.

Flux Pinning in $MgB_2$ Film with Columnar Grains (기둥형 결정립 구조를 지닌 $MgB_2$ 박막에서 자속고정 현상)

  • Kim, D.H.;Kim, H.Y.;Hwang, T.J.;Lee, S.H.;Seong, W.K.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2008
  • [ $MgB_2$ ] films grown by hybrid physical chemical vapor deposition under appropriate growth conditions commonly exhibit columnar grain structure. The grain boundaries between adjacent columnar grains have been reported to be good flux pinning centers. In this work, we measured the angular dependence of critical current density ($J_c$) and observed the enhanced flux pinning when an external magnetic field was aligned parallel to the columnar direction. This $J_c$ was almost comparable to the $J_c$ for intrinsic pinning case up to 1 T at low temperatures, indicating that grain boundary pinning is very effective. At high fields, however, $J_c$ decreased rapidly resulting from the fact that the density of flux pinning centers provided by grain boundaries was outnumbered by the flux density.

  • PDF

Effect of Micro Casting and Plasma-etching on Polycaprolactone Film for Bone (뼈 재생을위한 폴리카프로락톤 필름에 대한 마이크로 캐스팅 및 플라즈마 에칭)

  • Lee, Jae-Yun;Yang, Ji-Hun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.24-24
    • /
    • 2018
  • One of the challenges in tissue engineering is the design of optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focus on the effects of nano - to micro - sized hierarchical surface. To fabricate the hierarchical surface structure on poly(${\varepsilon}$-caprolactone) (PCL) film, we employed a nano/micro-casting technique (NCT) and modified plasma process. The micro size topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-size topography and hydrophilicity of PCL film were controlled by modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed, as increasing the plasma exposure time and applied power. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface.

  • PDF

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

Current Status of Intensive Observing Period and Development Direction (집중관측사업의 현황과 발전 방향)

  • Kim, Hyun Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Domestic IOP (intensive observing period) has mostly been represented by the KEOP (Korea Enhanced Observing Period), which started the 5-yr second phase in 2006 after the first phase (2001-2005). During the first phase, the KEOP had focused on special observations (e.g., frontal systems, typhoons, etc.) around the Haenam supersite, while extended observations have been attempted from the second phase, e.g., mountain and downstream meteorology in 2006 and heavy rainfall in the mid-central region and marine meteorology in 2007. So far the KEOP has collected some useful data for severe weather systems in Korea, which are very important in understanding the development mechanisms of disastrous weather systems moving into or developing in Korea. In the future, intensive observations should be made for all characteristic weather systems in Korea including the easterly in the central-eastern coastal areas, the orographically-developed systems around mountains, the heavy snowfall in the western coastal areas, the upstream/downstream effect around major mountain ranges, and the heavy rainfall in the mid-central region. Enhancing observations over the seas around the Korean Peninsula is utmost important to improve forecast accuracy on the weather systems moving into Korea through the seas. Observations of sand dust storm in the domestic and the source regions are also essential. Such various IOPs should serve as important components of international field campaign such as THORPEX (THe Observing system Research and Predictability EXperiment) through active international collaborations.

Effect of Infra-Gravity Waves on Nearshore Morphodynamics in the East Coast : Case Study - Ilsan Beach (장주기 중력외파의 동해안 연안지형변화에 미치는 영향 연구 : 사례연구 - 일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Ocean and Polar Research
    • /
    • v.40 no.2
    • /
    • pp.87-98
    • /
    • 2018
  • It is widely known that infragravity waves can exert significant influence on wave run-up over beaches. Large run-ups can lead to overwash, flooding and severe coastal erosion. In spite of the importance of infragravity waves in relation to wave run-up and coastal erosion, few studies have been carried out with regard to the impact of infragravity waves on nearshore morphodynamics with respect to eastern beaches in Korea. The purpose of this study is to investigate the importance of infragravity waves in nearshore numerical modelling. For the study, XBeach model was set up to analyze morphodynamics in December 2016, in Ilsan beach which is located in Ilsan-dong, Ulsan Metropolitan City. After validation of the XBeach model, numerical experiments were conducted by using various directional spreading coefficients. As the directional spreading coefficients are increased, the effect of infragravity waves is also enhanced by narrowband frequency. With the increasing effect of infragravity waves, the amount of sediment transport is also increased and an erosion dominant pattern is found in the south part of Ilsan beach and a deposition pattern in the north part of the beach mainly due to the wave incident direction of NNE.

The Effect of Proactive Personality on Creativity : Direct Effect, and Moderating Effect of Organizational Identification and Competitive Climate (주도적 성격이 창의성에 미치는 효과 : 주효과 및 조직동일시와 경쟁적 분위기의 조절효과)

  • Park, Owwon
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.838-859
    • /
    • 2018
  • Under highly uncertain environment, the importance of creativity has been emphasized to maintain firm's competitive advantage. To identify the antecedents in boosting creativity at the individual level, this study analyzed the direct effect of proactive personality on creativity. In addition, this paper also proposed and tested the moderating effects of organizational identification and competitive climate on the relationship between proactive personality and creativity. Empirical results using 127 R&D researchers at three major R&D institutes of large-firm in Korea revealed that proactive personality significantly enhanced the creativity. Moreover, organizational identification and competitive climate have positively strengthened the effect of proactive personality on creativity. Finally, implications, limitations, and direction of future studies were discussed.