• Title/Summary/Keyword: Engineering properties

Search Result 32,961, Processing Time 0.06 seconds

Edge perturbation on electronic properties of boron nitride nanoribbons

  • K.L. Wong;K.W. Lai;M.W. Chuan;Y. Wong;A. Hamzah;S. Rusli;N.E. Alias;S. Mohamed Sultan;C.S. Lim;M.L.P. Tan
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.385-399
    • /
    • 2023
  • Hexagonal boron nitride (h-BN), commonly referred to as Boron Nitride Nanoribbons (BNNRs), is an electrical insulator characterized by high thermal stability and a wide bandgap semiconductor property. This study delves into the electronic properties of two BNNR configurations: Armchair BNNRs (ABNNRs) and Zigzag BNNRs (ZBNNRs). Utilizing the nearest-neighbour tight-binding approach and numerical methods, the electronic properties of BNNRs were simulated. A simplifying assumption, the Hamiltonian matrix is used to compute the electronic properties by considering the self-interaction energy of a unit cell and the interaction energy between the unit cells. The edge perturbation is applied to the selected atoms of ABNNRs and ZBNNRs to simulate the electronic properties changes. This simulation work is done by generating a custom script using numerical computational methods in MATLAB software. When benchmarked against a reference study, our results aligned closely in terms of band structure and bandgap energy for ABNNRs. However, variations were observed in the peak values of the continuous curves for the local density of states. This discrepancy can be attributed to the use of numerical methods in our study, in contrast to the semi-analytical approach adopted in the reference work.

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Liu, Xiaoyun;Yang, Fan;Tan, Wenkan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Molecular Aligning Properties of a Dielectric Layer of Polymer-Ceramic Nanocomposite for Organic Thin-Film Transistors

  • Kim, Chi-Hwan;Kim, Sung-Jin;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1200-1203
    • /
    • 2004
  • We investigated the molecular aligning capability of a polymer layer containing ceramic nanoparticles which can be used as a gate insulator of organic thin-film transistors (OTFTs). Because of the enhanced dielectric properties arising from the nanoparticles and molecular aligning properties of the polymer, the composite layer provides excellent mobility characteristics of the OTFTs.

  • PDF

Evaluation of Engineering Properties of Soft Clay in the Daebul Reclaimed Area

  • Chang, Pyoung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.40-46
    • /
    • 1995
  • To identify the soft marine clay of the Daebul reclaimed area, the south western part of Korea, and determine their engineering properties, a series of the laboratory and field tests are conducted. The main findings are summarized from laboratory and field investigations. It is also formulated the basic geotechnical characteristic data for the porject area. The established correlations for the engineering properties are reviewed and their applicabilities are studied.

  • PDF

A Study on the Mechanical Properties of Woven Silk Fabrics

  • Seo, Moon-Hwo;Cho, Hang-Jang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1993.06b
    • /
    • pp.413-417
    • /
    • 1993
  • A study has been conducted on the mechanical properties of two sort of woven silk fabrics, i.e. habutae and dechine, with KES-류 handle measurement system. The mechanical properties are compared with their structural parameters, such as fabric densities, thickness

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition

  • Gong, Su-Cheol;Ryu, Sang-Ouk;Bang, Seok-Hwan;Jung, Woo-Ho;Jeon, Hyeong-Tag;Kim, Hyun-Chul;Choi, Young-Jun;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.17-22
    • /
    • 2009
  • Two different organic-inorganic hybrid thin film transistors (OITFTs) with the structures of glass/ITO/ZnO/PMMA/Al (staggered structure) and glass/ITO/PMMA/ZnO/Al (inverted staggered structure), were fabricated and their electrical and structural properties were compared. The ZnO thin films used as active channel layers were deposited by the atomic layer deposition (ALD) method at a temperature of $100^{\circ}C$. To investigate the effect of the substrates on their properties, the ZnO films were deposited on bare glass, PMMA/glass and ITO/glass substrates and their crystal properties and surface morphologies were analyzed. The structural properties of the ZnO films varied with the substrate conditions. The ZnO film deposited on the ITO/glass substrate showed better crystallinity and morphologies, such as a higher preferred c-axis orientation, lower FWHM value and larger particle size compared with the one deposited on the PMMA/glass substrate. The field effect mobility ($\mu$), threshold voltage ($V_T$) and $I_{on/off}$ switching ratio for the OITFT with the staggered structure were about $0.61\;cm^2/V{\cdot}s$, 5.5 V and $10^2$, whereas those of the OITFT with the inverted staggered structure were found to be $0.31\;cm^2/V{\cdot}s$, 6.8 V and 10, respectively. The improved electrical properties for the staggered OITFTs may originate from the improved crystal properties and larger particle size of the ZnO active layer.

  • PDF

Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing (가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성)

  • Jin-Kwon Kim;Jae-Hyeong Choi;Nahm Sahn;Sung-Soo Ryu;Seongwon Kim
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.