• Title/Summary/Keyword: Engineering procedure

Search Result 7,811, Processing Time 0.055 seconds

Quality Assurance and Quality Control method for Volatile Organic Compounds measured in the Photochemical Assessment Monitoring Station (광화학측정망에서 측정한 휘발성유기화합물의 정도관리 방법)

  • Shin, Hye-Jung;Kim, Jong-Choon;Kim, Yong-Pyo
    • Particle and aerosol research
    • /
    • v.7 no.1
    • /
    • pp.31-44
    • /
    • 2011
  • The hourly volatile organic compounds(VOCs) concentrations between 2005 and 2008 at Bulgwang photochemical assessment monitoring station were investigated to establish a method for quality assurance and quality control(QA/QC) procedure. Systematic error, erratic error, and random error, which was manifested by outlier and highly fluctuated data, were checked and removed. About 17.3% of the raw data were excluded according to the proposed QA/QC procedure. After QA/QC, relative standard deviation for representing 15 species concentrations decreased from 94.7-548.0% to 63.4-125.8%, implying the QA/QC procedure is proper. For further evaluation about the adequacy of QA/QC procedure, principal components analysis(PCA) was carried out. When the data after QA/QC procedure was used for PCA, the extracted principal components were different from the result from the raw data and could logically explain the major emission sources(gasoline vapor, vehicle exhaust, and solvent usage). The QA/QC procedure based on the concept of errors is inferred to proper to be applied on VOCs. However, an additional QA/QC step considering the relationship between species in the atmosphere needs to be further considered.

Development of Linear Static Alternate Path Progressive Collapse Analysis Procedure Using a Nonlinear Static Analysis Procedure (비선형정적해석 절차를 이용한 선형정적 연쇄붕괴 대체경로 해석방법 개발)

  • Kim, Jin-Koo;Park, Sae-Ro-Mi;Seo, Young-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.569-576
    • /
    • 2011
  • In this paper a new analysis procedure for evaluation of progressive collapse resisting capacity of a structure was proposed based on the nonlinear static analysis procedure. The proposed procedure produces analysis results identical to those obtained by the linear static analysis procedure specified in the GSA guidelines without iteration, therefore saving a lot of computation time and excluding the possibility of human errors during the procedure. To verify the validity of the proposed procedure, the two methods were applied to the analysis of a reinforced concrete moment frame and a steel braced frame subjected to loss of a first story column and the results were compared. According to the analysis results, the two methods produce identical results in the prediction of progressive collapse and the hinge formation. As iterative analysis is not required in the proposed method, significant amount of analysis time is saved in the proposed analysis procedure.

Comparison of the Tender Law and Procedure between China and Korea

  • Luo, Wenyuan;Lee, Yoon-Sun;Kim, Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.833-836
    • /
    • 2008
  • The construction industry has maintained a strong level of development in China in recent years. And with the steady development of the national economy, the construction industry will continue its momentum of growth in the coming years, which indicates a great tendering market in China. To gain a comprehensive understanding of Chinese tender market, a research based on construction laws and tendering laws was carried out. This research focused on differences of the tender environment between China and Korea, such as construction company certificate, bidding procedure and so on.

  • PDF

Structural design using topology and shape optimization

  • Lee, Eun-Hyung;Park, Jaegyun
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.517-527
    • /
    • 2011
  • A topology optimization and shape optimization method are widely used in the design area of engineering field. In this paper, a unified procedure to combine both topology and shape optimization method is used. A material distribution method is used first to extract necessary design parameters of the structure and a shape optimization scheme using genetic algorithm and satisfying all the condition follows. As an example, a GFRP bridge deck is designed and compared with other commercial products. The performance of the designed deck shows that the used design procedure is very efficient and safe. This procedure can be generalized for using in other areas of engineering.

A Study on the Reengineering of Partial Business in Information System Planning of information Engineering (정보공학의 정보시스뎀기획에 있어서 일부 업무의 재설계 적용방안)

  • 배재식;염창선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.27-34
    • /
    • 2002
  • Many organizations attempt to plan information strategy reflecting their overall business and direction using the information engineering methodology. They also try to redesign the process for partial business area. The above two approaches can be combined because information technology Plays an important role as an enabler for business process reengineering. For theses organizations, a new information strategy planning procedure that considers reengineering of partial business is proposed in this study. The proposed procedure is designed to minimize the change of information strategy planning procedure of the information engineering methodology. The project of K company is used as the case study.

A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model

  • Zhou, Changtai;Xu, Chaoshui;Karakus, Murat;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.471-482
    • /
    • 2018
  • A flat-jointed bonded-particle model (BPM) has been proved to be an effective tool for simulating mechanical behaviours of intact rocks. However, the tedious and time-consuming calibration procedure imposes restrictions on its widespread application. In this study, a systematic approach is proposed for simplifying the calibration procedure. The initial relationships between the microscopic, constitutive parameters and macro-mechanical rock properties are firstly determined through dimensionless analysis. Then, sensitivity analyses and regression analyses are conducted to quantify the relationships, using results from numerical simulations. Finally, four examples are used to demonstrate the effectiveness and robustness of the proposed systematic approach for the calibration procedure of BPMs.

A Robot End-effector for Biopsy Procedure Automation with Spring-Triggered Biopsy Gun Mechanism (스프링 격발형 생검총 구조를 가진 생검 시술 자동화 로봇 말단장치)

  • Won, Jong-Seok;Moon, Youngjin;Park, Sang Hoon;Choi, Jaesoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.590-596
    • /
    • 2016
  • Biopsy is a typical needle type intervention procedure performed under radiographic image equipment such as computed tomography (CT) and cone-beam CT. This minimal invasive procedure is a simple and effective way for identifying cancerous condition of a suspicious tissue but radiation exposure for the patients and interventional radiologists is a critical problem. In order to overcome such trouble and improve accuracy in targeting of the needle, there have been various attempts using robot technology. Those devices and systems, however, are not for full procedure automation in biopsy without consideration for tissue sampling task. A robotic end-effector of a master-slave tele-operated needle type intervention robot system has been proposed to perform entire biopsy procedure by the authors. However, motorized sampling adopted in the device has different cutting speed from that of biopsy guns used in the conventional way. This paper presents the design of a novel robotic mechanism and protocol for the automation of biopsy procedure using spring-triggered biopsy gun mechanism. An experimental prototype has been successfully fabricated and shown its feasibility of the automated biopsy sequence.

A Study on the Estimation of Economic Depreciation Rate on Industrial Property Using Equal Life Group Procedure (ELG 방법을 활용한 제조설비의 경제적 감가상각률 추정방안)

  • Oh, H.S.;Kwon, S.H.;Sung, I.S.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • Several different depreciation systems may be used for group depreciation. The vintage group procedure treats the same type of property placed in service during the same year as a distinct group for depreciation purposes; therefore an estimate of the probable average service life and net salvage ratio(s) of each individual vintage is necessary. The vintage group procedure calculates an accrual rate for each vintage and the accrual rate for an account for specific calendar year is the weighted average vintage accrual rate for that calendar year. A further refinement would be to divide each vintage into groups such that all of the dollars in a group have the same estimated life-an equal life group (ELG). Then each ELG is depreciated over its estimated life. The effect is to recover each dollar over the estimated number of years it is in service. Each vintage is divided into several equal life groups (ELGs) such that all the property in a specific ELG has the same estimated life. The accrual rate for each ELG is based on the estimated life of that ELG. The vintage accrual rate for a specific year is the weighted average ELG accrual rate for that calendar year. In this paper, we illustrate the calculations of vintage accrual rates for each of the calendar years by the ELG depreciation systems.

MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION (MRA와 POD를 적용한 공력특성 최적설계)

  • Koo, B.C.;Han, J.H.;Jo, T.H.;Park, K.H.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.7-15
    • /
    • 2015
  • This paper attempts to evaluate the accuracy and efficiency of a design optimization procedure by combining wavelets-based multi resolution analysis method and proper orthogonal decomposition (POD) technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Thus, even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system by conducting singular value decomposition for various field simulations. In this research, POD combined Design Optimization model is proposed and its efficiency and accuracy are to be evaluated. For additional efficiency improvement of the procedure, multi resolution analysis method is also being employed during snapshot constructions (POD training period). The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/MRA design procedure could significantly reduce the total design turnaround time and also capture all detailed complex flow features as in full order analysis.