• Title/Summary/Keyword: Engineering interdisciplinary design

Search Result 185, Processing Time 0.035 seconds

Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules (인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측)

  • Sukh-Erdene, Bolortuya;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Data Framework Design of EDISON 2.0 Digital Platform for Convergence Research

  • Sunggeun Han;Jaegwang Lee;Inho Jeon;Jeongcheol Lee;Hoon Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2292-2313
    • /
    • 2023
  • With improving computing performance, various digital platforms are being developed to enable easily utilization of high-performance computing environments. EDISON 1.0 is an online simulation platform widely used in computational science and engineering education. As the research paradigm changes, the demand for developing the EDISON 1.0 platform centered on simulation into the EDISON 2.0 platform centered on data and artificial intelligence is growing. Herein, a data framework, a core module for data-centric research on EDISON 2.0 digital platform, is proposed. The proposed data framework provides the following three functions. First, it provides a data repository suitable for the data lifecycle to increase research reproducibility. Second, it provides a new data model that can integrate, manage, search, and utilize heterogeneous data to support a data-driven interdisciplinary convergence research environment. Finally, it provides an exploratory data analysis (EDA) service and data enrichment using an AI model, both developed to strengthen data reliability and maximize the efficiency and effectiveness of research endeavors. Using the EDISON 2.0 data framework, researchers can conduct interdisciplinary convergence research using heterogeneous data and easily perform data pre-processing through the web-based UI. Further, it presents the opportunity to leverage the derived data obtained through AI technology to gain insights and create new research topics.

Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator (양방향 압전-유압 하이브리드 구동장치의 성능 시험)

  • Jin, Xiaolong;Ha, Ngocsan;Goo, Namseo;Bae, Byungwoon;Kim, Taeheun;Ko, Hanseo;Lee, Changseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.

Tangible Media based on Interactive Technology;iT_Media

  • Yoon, Joong-Sun;Yoh, Myeung-Sook;Lee, Hye-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.794-799
    • /
    • 2004
  • Recent paradigm in technology shifts from object-based technology to environment-based technology. Issue here is interaction among humans and the world around humans, which is natural and artificial "space." Holistic interactions based on "Mom (embodiment)" suggest a good starting point for exploring this issue. Soft engineering, "Mom," holistic interactions, tangible space, ubiquitous computing, science of emotion, and interactive media are key concepts in interactive technology. Interactive tangible media "iT_Media" is proposed to explore and synthesize these ideas. Interactive technology initiative (ITI) is an interdisciplinary research group to search for the proper technology and the proper way of implementing technology: "interactive technology" or "soft engineering." Some experimental activities conducted by ITI are presented in this session, "Interactive Technology."

  • PDF

Tangible Media based on Interactive Technology: A Tutorial

  • Yoon, Joongsun;Yoh, Myeungsook;Lee, Hyewon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.241-248
    • /
    • 2004
  • Recent paradigm in technology shifts from object-based technology to environment-based technology. Issue here is interaction among humans and the world around humans. The world we consider includes natural and artificial "space." Interactive technology, which explore holistic interactions based on "Mom (embodiment)," suggests a good starting point for exploring this issue. Soft engineering, "Mom," holistic interactions, tangible space, ubiquitous computing, science of emotion, and interactive media are key concepts in interactive technology. Interactive tangible media "iT_Media" is proposed to explore and synthesize these ideas. Interactive technology initiative (ITI) is an interdisciplinary research group to search for the proper technology and the proper way of implementing technology: "interactive technology" or "soft engineering." Some experimental activities conducted by ITI are presented in this paper.tal activities conducted by ITI are presented in this paper.

Evaluation Method of Physical Workload in Overhead Lifting Posture Using Surface EMG Analysis (sEMG 분석을 이용한 높이 들어올리기 자세에서의 신체적 작업부하의 정량적 평가방법 개발)

  • Lee, Young-Jin;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.328-335
    • /
    • 2011
  • For human factor engineering and wearable robot design, the quantitative assessment of physical workload is needed. Through measuring the surface EMG (sEMG) and analysis, the physical workload in overhead lifting posture is presented in quantitative manner. By normalizing sEMG activities with maximal voluntary contraction (MVC), the inter-subject variability is reduced. In all muscles, %MVC increased as the weight of lifting object increases. In anterior deltoid muscle, the %MVC was 3-4 times higher than the other muscles which imply that this muscle performs the major role in the overhead lifting posture. In fatigue analysis, %MVC and the mean frequency in muscle of anterior deltoid changed markedly when compared with other muscles. Through the suggested procedures and analysis, the physical workload for a specific posture can be represented in quantitative way but the clinical meaning for the value should be investigated further.

The Chinese Performance-based Code for Fire-resistance of Steel Structures

  • Li, Guo-Qiang;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • In the past two decades, researchers from different countries have conducted series of experimental and theoretical studies to investigate the behaviour of structures in fire. Many new insights, data and calculation methods have been reported, which form the basis for modern interdisciplinary structural fire engineering. Some of those methods are now adopted in quantitative performance-based codes and have been migrated into practice. Mainly based on the achievements in structural fire research at China, the Chinese national code for fire safety of steel structures in buildings has been drafted and approved, and will be released in this year. The code is developed to prevent steel structures subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. This paper presents the main contents of the code, which includes the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and structural components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant check and design of steel components. The analytical approaches employed in the code and their validation works are also presented.

Failure Criterion of Straight Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 직관의 파손 기준)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 2014
  • This study was carried out an experimental and finite element analysis on the fracture behavior of straight pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area has an eroded ratio of d/t=0.80~0.92 and an eroded length of l=25, 50 and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using the finite element method, which is able to accurately simulate failure behaviors. In regards to the relation ship between pressure and eroded ratio, the criterion that can be used safely under operating pressure and design pressure were obtained from this calculation. The results of this calculation were in relatively good agreement with that of the experiment.

RISK ANALYSIS FOR INDUSTRIAL PROJECT IN CONSTRUCTION PHASE: A MONTE-CARLO SIMULATION APPROACH

  • Soo-Yong Kim;Luu Truong Van;Han-Ki Ha;Nguyen Quoc Tuan
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.130-139
    • /
    • 2007
  • This paper presents a study on risk analysis in terms of contractor's costs in construction phase in which Crystal ball (software of Decisioneering, UK) has been utilized as a main tool. To realize it, a questionnaire survey has been carried out to identify the dominant factors that strongly influence contractor costs in Vietnam. Based on results of questionnaire investigation, the survey identified three factors which were duration of each construction task, costs of reinforcing steel, and cement. Then a spreadsheet model was created in order to analyze risks. The study also indicates that the cost of reinforcing steel and cement are the cause of risks for contractors. According to the suggested model, contractors may foresee the probability of completion within the approved budget, and the possibility of earning in accordance with owner's payment conditions.

  • PDF

Design and fabrication of a dynamically tuned gyroscope (DTG (Dynamically Tuned Gyroscope) 설계 및 제작)

  • 이장규;이장무;김원찬;이동녕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.519-521
    • /
    • 1987
  • Among the gyroscopes used for SDINS, the dynamically turned gyroscope (DTG) covers a wide dynamic range while it is simple and small. In addition, it is a two-degree-of freedom gyro; it can detect two-axis input simultaneously. DTG, since its development in 1970's, is widely accepted for strapdown inertial systems. In the first year, we have concentrated on developing a two degree-of-freedom DIG. An interdisciplinary research team has been formed to accomplish the first year objective. Five departments in the College of Engineering, Seoul National University are involved. They are; 1) Department of Control and Instrumentation, 2) Department of Mechanical Design and Production, 3) Department of Electrical Engineering, 4) Department of Electronic Engineering, and 5) Department of Metallurgical Engineering. In addition, the Department of Precision Mechanical Engineering of Pusan National University is subcontracted to develop a test procedure for gyroscope and SDINS. Gyroscope is a key sensor for SDINS. Furthermore gyroscope itself is used as a. independent sensor for vehicle guidance and control and fire control system. Gyroscope and SDINS are an important for defense, aeronautical, and space industries that Korea is and will be actively involved. Upon the success of the project, they are expected to be manufactured in Korea under a cooperative effort between university and industry.

  • PDF