• Title/Summary/Keyword: Engineering information

Search Result 82,730, Processing Time 0.098 seconds

Estimation of Friction Coefficients Based on Field Data (실측값에 근거한 마찰계수의 추정)

  • Jeon, Se Jin;Park, Jong Chil;Park, In Kyo;Shim, Byul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.487-494
    • /
    • 2009
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, the ranges of the friction coefficients presented in domestic and foreign specifications are compared together to clarify the differences. Then, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data such as elongation and prestressing force and from theory related to the friction. The procedure is applied to various tendon profiles of several PSC bridges constructed by ILM, FCM and MSS. The resulting values are compared with those presented in some specifications and assumed in jacking and a reasonable range of the friction coefficient is discussed. Lift-off tests are also performed in some bridges to further verify the results. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but range from the lower limit to mid point of domestic specifications, while the curvature friction coefficients approach or slightly exceed the upper limit.

Assessment of the Contribution of Weather, Vegetation, Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (I) - Preparation of Input Data for the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지유역과 하천유역에 미치는 기여도 평가(I) - 모형의 입력자료 구축 -)

  • Park, Geun-Ae;Lee, Yong-Jun;Shin, Hyung-Jin;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.107-120
    • /
    • 2010
  • The effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water was assessed using the SLURP (semi-distributed land use-based runoff process), a physically based hydrological model. The fundamental input data (elevation, meteorological data, land use, soil, vegetation) was collected to calibrate and validate of the SLURP model for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang and Gosam) located in Anseongcheon watershed. Then, the CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year, m ms, m5ms and 2amms was downscaled by Change Factor method through bias-correction using 3m years (1977-2006) weather data of 3 meteorological stations of the watershed. In addition, the future land uses were predicted by modified CA (cellular automata)-Markov technique using the time series land use data fromFactosat images. Also the future vegetation cover information was predicted and considered by the linear regression between monthly NDVI (normalized difference vegetation index) from NOAA AVHRR images and monthly mean temperature using eight years (1998-2006) data.

Measurement of Velocity and Discharge In Natural Streams with the Electronic Float System (전자부자 시스템을 활용한 자연하천의 유속과 유량 측정)

  • Lee, Chan Joo;Kim, Won;Kim, Chi Young;Kim, Dong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.329-337
    • /
    • 2009
  • In this study we briefly introduce the electronic float system based on the GPS and RF communication technology and present some field application results. The system is capable of operating 15 floats simultaneously for making discharge measurement. Since the electronic floats (EFs) acquire flow paths, they can improve velocity measurement accuracy up to 10%. Additionally, measured velocities by the EFs show good agreement with those by an ADCP. Relative difference in sub-section area calculated by the electronic and conventional float methods is -79~71% and, due to convergent tendency of floats flowing along near banks, it increases much larger. It is possible to improve accuracy up to 5~6% in making discharge measurement by the electronic floats at site with irregular flow paths and section arrangement. The electronic float system is capable of calculating more accurate velocity and section area using position information based on GPS. By real-time measurement of velocity, cross-section area and discharge, the electronic float system is expected to reduce manpower and improve accuracy, rapidity and efficiency of flood discharge measurements.

Stable Channel Analysis and Design for the Abandoned Channel Restoration Site of Cheongmi Stream using Regime Theory (평형하상 이론을 이용한 청미천 구하도 복원 대상구간의 안정하도 평가 및 설계)

  • Ji, Un;Julien, Pierre Y.;Kang, Joon Gu;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.305-313
    • /
    • 2010
  • River restoration or rehabilitation should be conducted in a way to maximize the channel stability with natural river configuration close to the equilibrium condition considering divers aspects of fluvial hydraulics, erosion and sedimentation, fluvial geomorphology, and ecological environment and to minimize the maintenance work. Therefore, the channel stability evaluation for present condition based on the equilibrium channel concept should be preceded for the river restoration project. Methods for equilibrium channel theory have generally been developed following either analytical regime theory or empirical regime theory. The main purpose of this paper is to evaluate the stability of present channel condition for the section of abandoned channel restoration in Cheongmi Stream using the Stable channel Analytical Model (SAM) and equilibrium hydraulic geometry equations. The results of analytical and empirical regime theories should provide fundamental and essential information to design the stable channel geometry. As a calculation result of Copeland's method for the study reach, the equilibrium channel has a narrower channel width, deeper water depth, and more gentle slope than the present channel geometry. As results of equilibrium hydraulic geometry equations, predicted equilibrium widths are less than the channel width in the field. It is represented that the current bed slope must be gentle to reach the equilibrium condition according to the results of Julien and Wargadalam method.

Temperature Effect on the Growth and Odorous Material (2-MIB) Production of Pseudanabaena redekei (온도가 남조류 Pseudanabaena redekei의 성장과 냄새물질(2-MIB) 생산에 미치는 영향)

  • Jaehyun Kim;Keonhee Kim;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • Cyanobacteria Pseudanabaena strains are known to produce 2-MIB(odorous material) in freshwater systems, thereby causing problems in water use. However, their physiological responses to environmental factors in relation with 2-MIB production is not well explored. This study was conducted to evaluate the effect of temperature on the growth and 2-MIB production of Pseudanabaena redekei. The experimental cyanobacteria strains were separated from the Uiam Reservoir (North Han River) and cultured in the BG-11 medium. Temperature was set to 10, 15, 20, 25, and 30℃ for the experiment, in the reflection of the seasonal water temperature variation in situ. For each temperature treatment, cyanobacterial biomass(Chl-a) and 2-MIB concentration (intra-cellular and extra-cellular fractions) were measured every 2 days for 18 days. Both maximal growth and total 2-MIB production of P. redekei appeared at 30℃. While intra-cellular 2-MIB contents were similar (26~29 ng L-1) regardless of treated temperatures, extra-cellular 2-MIB concentration was higher only in high temperature conditions (25~30℃), indicating that the extents of 2-MIB biosynthesis and release by P. redekei vary with temperature. The 2-MIB productivity of P. redekei was much higher in low-temperature conditions (10~15℃) than high temperature conditions (25~30℃). This study demonstrated that temperature was a critical factor contributing to 2-MIB biosynthesis and its release in cell growth (r=0.605, p<0.01). These results are important to understand the dynamics of 2-MIB in the field and thereby provide basic information for managing odorous material in drinking water resources.

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time (과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향)

  • Min Gyeong Kim;Seong Hee Choi;Jong-In Youn
    • Phonetics and Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.

Urban Object Classification Using Object Subclass Classification Fusion and Normalized Difference Vegetation Index (객체 서브 클래스 분류 융합과 정규식생지수를 이용한 도심지역 객체 분류)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • A widely used method for monitoring land cover using high-resolution satellite images is to classify the images based on the colors of the objects of interest. In urban areas, not only major objects such as buildings and roads but also vegetation such as trees frequently appear in high-resolution satellite images. However, the colors of vegetation objects often resemble those of other objects such as buildings, roads, and shadows, making it difficult to accurately classify objects based solely on color information. In this study, we propose a method that can accurately classify not only objects with various colors such as buildings but also vegetation objects. The proposed method uses the normalized difference vegetation index (NDVI) image, which is useful for detecting vegetation objects, along with the RGB image and classifies objects into subclasses. The subclass classification results are fused, and the final classification result is generated by combining them with the image segmentation results. In experiments using Compact Advanced Satellite 500-1 imagery, the proposed method, which applies the NDVI and subclass classification together, showed an overall accuracy of 87.42%, while the overall accuracy of the subchannel classification technique without using the NDVI and the subclass classification technique alone were 73.18% and 81.79%, respectively.

A Design of Greenhouse Control Algorithm with the Multiple-Phase Processing Scheme (다중 위상 처리구조를 갖는 온실 복합환경제어 알고리즘 설계)

  • Daewook Bang
    • Journal of Service Research and Studies
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 2021
  • This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.

Detecting Backward Erosion Piping Using a Tracer (추적자를 이용한 후퇴 침식 파이핑 현상 탐지법 개발 연구)

  • Jeong, Won;Kim, Byunguk;Seo, Il Won;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.55-62
    • /
    • 2023
  • Internal erosion is one of the main causes of levee damage and collapse, and representative of this is backward erosion piping. This type of internal erosion accounts for one-third of the damage to levees, meaning it is important to predict and prevent it. In this work, experiments were conducted with the aim of detecting piping in advance by using a tracer. Experiments were undertaken by changing the head difference, soil diameter, and the installation of the cutoff wall. A tracer was injected twice, once at the beginning of the experiment and once after the piping occurred. A key finding was that the piping process significantly affectedthe concentration variation of the tracer in a soil layer. Hence, a tracer concentration curve monitored at downstream could provide information about piping occurrence. It is expected that the results of this study can be used to prevent levee damage and collapse caused by piping.

Context-Dependent Video Data Augmentation for Human Instance Segmentation (인물 개체 분할을 위한 맥락-의존적 비디오 데이터 보강)

  • HyunJin Chun;JongHun Lee;InCheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.217-228
    • /
    • 2023
  • Video instance segmentation is an intelligent visual task with high complexity because it not only requires object instance segmentation for each image frame constituting a video, but also requires accurate tracking of instances throughout the frame sequence of the video. In special, human instance segmentation in drama videos has an unique characteristic that requires accurate tracking of several main characters interacting in various places and times. Also, it is also characterized by a kind of the class imbalance problem because there is a significant difference between the frequency of main characters and that of supporting or auxiliary characters in drama videos. In this paper, we introduce a new human instance datatset called MHIS, which is built upon drama videos, Miseang, and then propose a novel video data augmentation method, CDVA, in order to overcome the data imbalance problem between character classes. Different from the previous video data augmentation methods, the proposed CDVA generates more realistic augmented videos by deciding the optimal location within the background clip for a target human instance to be inserted with taking rich spatio-temporal context embedded in videos into account. Therefore, the proposed augmentation method, CDVA, can improve the performance of a deep neural network model for video instance segmentation. Conducting both quantitative and qualitative experiments using the MHIS dataset, we prove the usefulness and effectiveness of the proposed video data augmentation method.