• 제목/요약/키워드: Engineering change analysis

검색결과 6,319건 처리시간 0.041초

OLAP를 이용한 설계변경 분석 방법에 관한 연구 (A Method for Engineering Change Analysis by Using OLAP)

  • 도남철
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.103-110
    • /
    • 2014
  • Engineering changes are indispensable engineering and management activities for manufactures to develop competitive products and to maintain consistency of its product data. Analysis of engineering changes provides a core functionality to support decision makings for engineering change management. This study aims to develop a method for analysis of engineering changes based on On-Line Analytical Processing (OLAP), a proven database analysis technology that has been applied to various business areas. This approach automates data processing for engineering change analysis from product databases that follow an international standard for product data management (PDM), and enables analysts to analyze various aspects of engineering changes with its OLAP operations. The study consists of modeling a standard PDM database and a multidimensional data model for engineering change analysis, implementing the standard and multidimensional models with PDM and data cube systems and applying the implemented data cube to core functions of engineering change management, the evaluation and propagation of engineering changes.

공학 설계 프로세스에서 설계 변경 영향 해석 (Change Impact Analysis in Engineering Design Process)

  • 정태형;박승현
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.151-158
    • /
    • 2003
  • Design changes frequently occur while design activities are performed. If the impact of design changes is estimated, design efficiency can be improved. But, the types of design changes are various and they can affect other design parts. Hence, it is difficult to deal with design changes directly. The purpose of this research is to develop systematic algorithms for change propagation tracing and change impact analysis, and then to implement a change impact analysis system. We have selected a process-based design and a design environment which is composed of design parameters and constraints. The algorithm for change propagation tracing tracks the change propagation of design parameters and finds design parameters, constraints and tasks which are probably changed. In the algorithm for change impact analysis, a change impact value is calculated from the list of changeable tasks. These two algorithms have been implemented into change impact analysis system (CIAS). CIAS has been applied to the redesign of 2 stage gear drives. CIAS can improve the efficiency of design activities. If there are many alternatives for a design change at the redesign step, designers can calculate the change impact value of each alternative and perform design change activities in the direction of minimizing design change impact.

Examining Change Order Reasons for Non-Structural Utility Support Projects in Healthcare Facilities

  • Genota, Naomi P.;Kim, Joseph J.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.188-195
    • /
    • 2022
  • Although issuing change orders is a common practice in the construction phase of any project, non-structural utility subcontractors are struggling and seek to find a way to reduce change orders. Therefore, this paper presents the analysis results on change orders to cultivate possible suggestions and solutions on how to reduce or minimize change orders in mechanical, electrical, and plumbing (MEP) works. Change orders in non-structural utility works are analyzed based on six categories such as rerouting and change of location, changes in weight, rejected design by Office of Statewide Health Planning and Development, District Structural Engineer, or the Structural Engineer of Record, unforeseen conditions, changed equipment, and owner-initiated change. The analysis findings showed that rerouting and changing location is the most significant cause, followed by unforeseen conditions. The results not only contribute to the existing body of knowledge on change order research area, but also help MEP contractors reduce the time and cost of change orders.

  • PDF

Structural behavior of cable-stayed bridges after cable failure

  • Kim, Seungjun;Kang, Young Jong
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1095-1120
    • /
    • 2016
  • This paper investigates the change of structural characteristics of steel cable-stayed bridges after cable failure. Cables, considered as the intermediate supports of cable-stayed bridges, can break or fail for several reasons, such as fire, direct vehicle clash accident, extreme weather conditions, and fatigue of cable or anchorage. Also, the replacement of cables can cause temporary disconnection. Because of the structural characteristics with various geometric nonlinearities of cable-stayed bridges, cable failure may cause significant change to the structural state and ultimate behavior. Until now, the characteristics of structural behavior after cable failure have rarely been studied. In this study, rational cable failure analysis is suggested to trace the new equilibrium with structural configuration after the cable failure. Also, the sequence of ultimate analysis for the structure that suffers cable failure is suggested, to study the change of ultimate behavior and load carrying capacity under specific live load conditions. Using these analysis methods, the statical behavior after individual cable failure is studied based on the change of structural configuration, and distribution of internal forces. Also, the change of the ultimate behavior and load carrying capacity under specific live load conditions is investigated, using the proposed analysis method. According to the study, significant change of the statical behavior and ultimate capacity occurs although just one cable fails.

Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)

  • Park, Chun Woong;Park, Chongdae;Choi, Woo Young;Seo, Dongsun;Jeong, Cherlhyun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.48-52
    • /
    • 2014
  • In this paper, scaling down characteristics of vertical channel phase random access memory are investigated with device simulator and finite element analysis simulator. Electrical properties of select transistor are obtained by device simulator and those of phase change material are obtained by finite element analysis simulator. From the fusion of both data, scaling properties of vertical channel phase change random access memory (VPCRAM) are considered with ITRS roadmap. Simulation of set reset current are carried out to analyze the feasibility of scaling down and compared with values in ITRS roadmap. Simulation results show that width and length ratio of the phase change material (PCM) is key parameter of scaling down in VPCRAM. Thermal simulation results provide the design guideline of VPCRAM. Optimization of phase change material in VPCRAM can be achieved by oxide sidewall process optimization.

토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지 (Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map)

  • 박녕희;김동학;안재윤;최재완;박완용;박현춘
    • 대한원격탐사학회지
    • /
    • 제33권6_2호
    • /
    • pp.1075-1087
    • /
    • 2017
  • 본 연구에서는 위성영상에 대한 변화탐지 기법의 결과를 토지피복지도 갱신의 기초자료로 활용하고자 하였다. $S^2CVA$(Sequential Spectral Change Vector Analysis) 기법을 다시기 다중분광 위성영상에 적용하여 해당 지역 내의 변화지역을 추출하였다. 특히, 분광변화벡터의 방향정보를 이용하여 계절적 변화에 의한 변화지역의 오탐지를 최소화하고자 하였다. 변화탐지 결과인 이진영상은 구역통계를 활용하여 토지 피복도와 함께 통합하였으며, 토지피복지도 갱신을 위하여 객체 기반의 분석을 수행하였다. PlanetScope 자료와 환경부의 토지피복지도를 이용한 실험결과, 토지피복지도 내에 변화된 지역을 효과적으로 탐지할 수 있음을 확인하였다.

상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석 (Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream)

  • 박성재;곽지혜;김지혜;김석현;이현지;김시내;강문성
    • 한국농공학회논문집
    • /
    • 제66권1호
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

Selection of Key Management Targets for Claim Causes through Relational Analysis on the Causes of Change Order Claims

  • Min, Kwang-Ho;Ko, Gun-Ho;Jin, Chengquan;Hyun, Chang-Taek;Han, Sang-Won
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.281-290
    • /
    • 2017
  • As various stakeholders are involved in construction projects, disputes between the parties are more likely to occur, which is a very important issue for the participants in the projects. Claims in construction projects, however, are very complex and thus difficult to manage. In particular, as the cause of a claim in the preceding stage that has not been resolved in a timely manner has an effect on the cause of a claim in the following stage, it is difficult to find a point of compromise regarding a claim caused by the relationship between the causes that occur in the preceding and following stages. In this regard, this study sought to examine the rules for the generation of change order claims, which occur most frequently among the construction claims, and thus to select the key management targets through the analysis of the relationship between the causes of claims arising in the preceding and following stages for the efficient management of claims. It is expected that the use of rules for the generation of change order claims as well as of representative and similar cases will help the construction practitioners in judging claims, considering the relationships among the causes of the claims. Meanwhile, in this study, association analysis was conducted regarding the causes of the occurrence of change order claims in a design-build delivery method, and therefore, it is necessary to verify the effectiveness of the method when applied to other delivery methods.

  • PDF

수치해석과 실험을 통한 Can type container 내부 상변화 물질의 열유체적 특성분석 (Numerical analysis of the thermal fluid characteristics of phase change material in can type container)

  • 허승민;현수웅;정희준;신동호
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.63-71
    • /
    • 2023
  • Energy storage and distribution technologies are emerging as important factors as research on renewable energy continues. Analyzing the thermal flow of phase change material inside a latent heat storage device and to predict the phase change time is an important part for improvement of thermal performance. However, most of the current research is based on the trial-and-error experimental investigation to measure the phase change time. Therefore, in this study, a can-type phase change material container was designed, and the numerical method for analyzing the thermal flow of phase change material was established and validated. The error rate of the phase change time between the numerical and experimental results was within 5%, which proves its reliability. As a result, the phase change finishing times were found to be 78 minutes with inlet fluid temperature of 80℃ during charging process, and 126 minutes with inlet fluid temperature of 9℃ during discharging process.

토지이용 및 기후 예측자료를 활용한 미래 기저유출 분석 (Analysis of Baseflow using Future Land Use and Climate Change Scenario)

  • 최유진;김종건;이동준;한정호;이관재;박민지;김기성;임경재
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.45-59
    • /
    • 2019
  • Since the baseflow, which constitutes most of the river flow in the dry season, plays an important role in the solution of river runoff and drought, it is important to accurately evaluate the characteristics of the baseflow for river management. In this study, land use change was evaluated through time series data of land use, and then baseflow characteristics were analyzed by considering climate change and land use change using climate change scenarios. The results showed that the contribution of baseflow of scenarios considering both climate change and land use change was lower than that of scenarios considering only climate change for yearly and seasonal analysis. This implies that land use changes as well as climate changes affect base runoff. Thus, if we study the watershed in which the land use is occurring rapidly in the future, it is considered that the study should be carried out considering both land use change and climate change. The results of this study can be used as basic data for studying the baseflow characteristics in the Gapcheon watershed considering various land use changes and climate change in the future.