• Title/Summary/Keyword: Engineering barrier

Search Result 2,239, Processing Time 0.027 seconds

Complete Tunneling of Light via Local Barrier Modes in A Composite Barrier with Metamaterials

  • Kim, Kyoung-Youm;Kim, Sae-Hwa
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.314-318
    • /
    • 2008
  • We investigate the conditions of the complete tunneling of light across a composite barrier made of multiple layers involving metamaterials. It is shown that complete tunneling phenomena are related to the resonance transmission properties of local modes formed in barrier layers and that there are two distinctive kinds of local barrier modes involved in actual complete tunneling: the degenerate inner-barrier mode and the full barrier mode. Complete tunneling occurs via two successive mode couplings: from the incident plane wave to the plane wave in the transmission layer through the direct mediation of these two kinds of local barrier modes.

Sintering Distortion of Barrier Ribs Formed via Capillary Molding Route

  • Chang, Tae-Jung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.362-364
    • /
    • 2003
  • In this study, sintering behavior of closed-cell type barrier ribs formed via capillary molding route was examined. Sintering of the molded barrier ribs revealed asymmetric shrinkage, leading to distortion of the cells. The effects of the parameters such as solid loading in the paste, presintering temperature, and morphology of the barrier ribs on the sintering shrinkage of the barrier ribs were investigated.

  • PDF

Evaluation of the Performance of the Noise Barrier Using the BEM (경계요소법에 의한 방음벽의 성능 평가)

  • Hwang, Cheal-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2008
  • Noise barriers are being used more often to solve problems of noise pollution from traffic noise. Several types of noise barriers are being installed to increase the cost-effectiveness of noise barrier installation. In this study, the insertion loss is analyzed to evaluate the effectiveness of the noise barrier by using the BEM. In order to check the validity of the BEM, the BEM and Lam's theoretical analysis are compared with measurement, which is performed in the anechoic chamber for the 1/10 scale-down model, and good agreements are obtained. By using the two dimensional boundary element method, the insertion loss is calculated and analyzed for several typical noise barriers such as the vertical barrier, the barrier with an oblique edge on top, the T-shaped barrier and the barrier with interference device on top. With these analyses, it is possible to design more cost-effective noise barriers appropriate for a particular area.

Performance Evaluation of Steel and Composite Safety Barrier for Bridge by Vehicle Crash Simulation (차량 충돌 시뮬레이션에 의한 강재 및 복합소재 교량용 방호울타리 성능 비교)

  • Kim, Seung-Eock;Cho, Pan-Kyu;Hong, Kab-Eui;Jeon, Shin-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • A composite safety barrier for bridge has been developed and the performance of the composite safety barrier for bridge has been compared with the steel safety barrier for bridge through computer simulation. As the structural strength performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that the deformation of the composite safety barrier for bridge is 17.0% of that of the steel safety barrier for bridge. As the passenger protection performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that THIV and PHD of the composite safety barrier for bridge are 47.1% and 49.0% respectively of those of the steel safety barrier for bridge. As the behavior of the vehicle after crash, the composite safety barrier for bridge is superior to the steel safety barrier for bridge showing the increased exit velocity and the reduced exit angle. Both of the steel and composite safety barrier for bridge are not scattered in the analysis.

Design criteria of wind barriers for traffic -Part 2: decision making process

  • Kim, Dong Hyawn;Kwon, Soon-Duck;Lee, Il Keun;Jo, Byung Wan
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • This study presents a decision making process for installation of wind barrier which is used to reduce the wind speed applied to running vehicles on expressway. To determine whether it is needed to install wind barrier or not, cost and benefit from wind barrier are calculated during lifetime. In obtaining car accidental risk, probabilistic distribution of wind speed, daily traffic volume, mixture ratio in the volume, and duration time for wind speed range are considered. It is recommended to install wind barrier if benefit from the barrier installation exceed construction cost. In the numerical examples, case studies were shown for risk and benefit calculation and main risky regions on Korean highway were all evaluated to identify the number of installation sites.

Effect of Binder Polymer on the Photolithographic Patterning of PDP Barrier Rib

  • Kim, Dong-Ju;Kim, Duck-Gon;Woo, Chang-Min;Ryu, Sueng-Min;Yang, Dong-Yol;Kim, Soon-Hak;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1364-1367
    • /
    • 2007
  • In this study, the effect of binder polymer on the photolithographic patterning of barrier ribs was studied from view point of polymer structure and barrier rib pattern.

  • PDF

Tunnel Barrier Engineering for Non-Volatile Memory

  • Jung, Jong-Wan;Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.32-39
    • /
    • 2008
  • Tunnel oxide of non-volatile memory (NVM) devices would be very difficult to downscale if ten-year data retention were still needed. This requirement limits further improvement of device performance in terms of programming speed and operating voltages. Consequently, for low-power applications with Fowler-Nordheim programming such as NAND, program and erase voltages are essentially sustained at unacceptably high levels. A promising solution for tunnel oxide scaling is tunnel barrier engineering (TBE), which uses multiple dielectric stacks to enhance field-sensitivity. This allows for shorter writing/erasing times and/or lower operating voltages than single $SiO_2$ tunnel oxide without altering the ten-year data retention constraint. In this paper, two approaches for tunnel barrier engineering are compared: the crested barrier and variable oxide thickness. Key results of TBE and its applications for NVM are also addressed.

High performance Organic-Inorganic Hybrid Materials for Application in OLED Barrier Coating

  • Jung, Kyung-Ho;Yun, Chang-Hun;Bae, Jun-Young;Yoo, Seung-Hyup;Bae, Byeong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.806-809
    • /
    • 2009
  • Epoxy functionalized organic-inorganic hybrid materials (hybrimers) were synthesized by sol-gel reaction for application in OLED barrier coating. By using the calcium degradation method, the oxygen transition rate (OTR) and water vapor transition rate (WVTR) measured so far is $10^{-2}cc/m^2$-day for oxygen and $10^{-1}g/m^2$-day for water molecules with single hybrimer coating film, respectively. Encapsulated OLED devices have life time of 14hrs of a single hybrimer barrier coating and 29hrs of hybrimer/inorganic double barrier coatings at $25^{\circ}C$ and 60% relative humidity.

  • PDF

Improving Gas Barrier Property of Polymer Based Nanocomposites Using Layer by Layer Deposition Method for Hydrogen Tank Liner

  • Lee, Suyeon;Han, Hye Seong;Seong, Dong Gi
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2022
  • Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.

Effects of Composition, Structure Design, and Coating Thickness of Thermal Barrier Coatings on Thermal Barrier Performance

  • Jung, Sung-Hoon;Jeon, Soo-Hyeok;Lee, Je-Hyun;Jung, Yeon-Gil;Kim, In-Soo;Choi, Baig-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.689-699
    • /
    • 2016
  • The effects of composition, structure design, and coating thickness of thermal barrier coating (TBC) on thermal barrier performance were investigated by measuring the temperature differences of TBC samples. TBCs with the thin and thick top coats were used for these studies, including TBCs with rare-earth (Gd, Yb, and La) compositions. The thermal barrier performance was enhanced with increasing the thickness of top coat even for thin TBCs, indicating that the thermal barrier performance was commensurate to the thickness of top coat. On the other hand, the bi-layered TBC, which was prepared with Yb-Gd-YSZ feedstock powder, with the buffer layer of high purity 8YSZ showed a better thermal barrier performance than that of regular purity 8YSZ. The interfaces in the bi-layered TBCs had a decisive effect on the thermal barrier performance, showing the performance enhanced with increasing numbers of interfaces. However, a new structural design and an additional process should be considered to reduce stress concentrations and to ensure interface stability, respectively, for improving thermal durability in the multi-layered TBCs.