• Title/Summary/Keyword: Engineering Education Model

Search Result 1,608, Processing Time 0.032 seconds

Online face-to-face instructional design model for Software Education using Virtual Classroom (버추얼 클래스룸을 활용한 소프트웨어교육 온라인 대면 교수 설계 모형)

  • Seo, SeongChae;Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.1
    • /
    • pp.75-84
    • /
    • 2022
  • Currently, education is being conducted through face-to-face classes and instructional design using blended learning, an integrated online and offline model that utilizes online characteristics. As the paradigm of education has changed from face-to-face classes to non-face-to-face classes since COVID-19, teaching methods to respond to changes are required in the educational field. In this paper, as a instructional design model using online, we proposed a instructional design model that conducts online classes in non-real time and then conducts online face-to-face classes using virtual classrooms in real time. In addition, a teaching strategy that can apply the online face-to-face teaching design model using the proposed virtual class room to software classes was presented. The proposed instructional design model will be able to prepare for a paradigm shift in education with a teaching design that can accommodate the characteristics of face-to-face education online.

Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model

  • Nie, Junfeng;Liu, Yunpeng;Xie, Qihao;Liu, Zhanli
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.501-509
    • /
    • 2019
  • In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

A Study on the Development of Hybrid-typed Education Model for PO6 and PO7 Estimation (복합학제적 능력 및 의사소통 능력과 관련된 학습성과 평가를 위한 융합교육형 모델 개발에 관한 연구)

  • Kim, Eun-Joo;Cho, Young-Im;Do, Seung-Lee
    • Journal of Engineering Education Research
    • /
    • v.13 no.6
    • /
    • pp.132-142
    • /
    • 2010
  • The purpose of this study is to suggest the assessment method for PO6(teamwork) and PO7(communication skill), one of the most important assessment items in engineering accreditation. In this paper, we used the assessment criteria of Rubric, to empirically measure the teamwork and communication skill. Teamwork and communication skill (PO6, PO7) are the most critical social competences in modern society. Numerous studies on education showed that teamwork and communication skill can be enhanced through learning. We, therefore, need to investigate teamwork and communication skill in terms of education. However, research on the assessment method of the engineering accreditation, based on educational view is scarce. In this study, we suggest the assessment criteria of Rubric for PO6 and PO7 with the perspective of the education. We also tried to apply the developed criteria to the related subjects.

  • PDF

Development and Validation of Core Competency Scale For Graduate Students in the Field of Science and Engineering (이공계열 대학원생 핵심역량 진단도구 개발 및 타당화 연구: A연구중심대학 사례)

  • Bae, Sang Hoon;Cho, Eun Won;Han, Song Ie;Jeong, Yoo Ji;Kim, Kyeong Eon
    • Journal of Engineering Education Research
    • /
    • v.27 no.2
    • /
    • pp.35-50
    • /
    • 2024
  • The purpose of this study is to identify the core competencies of graduate students at A research university in the context of graduate education in science and engineering, and to develop and validate a diagnostic tool to measure them. To achieve the research objectives, first, 6 factors and 18 sub-competencies of core competencies were derived based on a review of domestic and foreign studies, cases of excellent research-centered overseas universities, and interviews with members of A University. Second, a theoretical model was constructed by deriving behavioral indicators based on the core competencies and sub-competencies, and a preliminary survey was conducted on 188 graduate students of University A to verify the statistical validity of the theoretical model. Results of exploratory and confirmatory factor analysis, the core competencies of graduate students at A research university consisted of 6 factors, 16 sub-competencies, and 77 items. Specifically, it included "Independent research capability(13 items)", "Social Entrepreneurship(10 items)", "Academic agility(15 items)", "Ingenious Challenges(15 items)", "Collegial Collaboration(9 items)", and "Mueunjae leadership(15 items)". This study contributes to the development of theories related to core competencies of graduate students in science and engineering, and has practical significance as a basis for a data-driven competency-based graduate education system.

UX design strategy for Education Mobile app based on User Value (사용자 가치 기반에 의한 교육용 모바일 앱의 UX디자인 설계전략)

  • Choi, Eun-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1386-1392
    • /
    • 2017
  • With the active usage of digital media, the importance of and the interest in User Interface (UI)/User Experience (UX) have been increasing. This study proposes the development of design evaluation model to utilize the quality analysis model as a basis if there were to be a development of mobile education application. Main factors of the design evaluation model, which is based on User Value analysis, influence users' attitudes and intentions in continuing their uses of a mobile education application. The employment of the design evaluation factors onto the existing agile method's development stage, therefore, would provide an optimal UX environment for the application. This application not only will increase the satisfactions of consumers, but also will have positive impacts on their intentions in continuing their uses of a mobile education application.

Multi-level Modeling and Simulation of Electrical Vehicles (전기자동차의 다중레벨 모델링과 시뮬레이션)

  • Oh, Yong-Taek;van Duijsen, P.J.
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • There are many ways in which electric vehicles are mathematically modeled and simulated. The components have different physical background and models, but have to fit into one mathematical model. A multiphysics model structure is required. Depending on the goal of the simulation, there are various levels on which the simulation can be performed. This is called multilevel, consisting of a conceptual system level, a circuit level and a more detailed component level. This paper discusses which multiphysics models and multilevel simulations are required for the various components in an electric vehicle. Also, this simulation approach could improve the effectiveness of learning in engineering education.

  • PDF

VR-based education system for inspection of concrete bridges

  • Miyamoto, Ayaho;Konno, Masa-Aki;Rissanen, Tommi
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.29-42
    • /
    • 2006
  • In this study, a novel education system for inspection of concrete bridges is presented. The new education approach uses virtual reality (VR) and three-dimensional computer graphics (3DCG) in training engineers to become bridge inspection specialists. The slow time-dependent deterioration of concrete bridges can be reproduced on the computer screen in any chosen time frame, thus providing the trainees with illustrative and educative insight into the deterioration problem. In the proposed VR/3DCG approach a three-dimensional model of concrete bridge, including surfaces, viewpoints and walkthrough paths is created. With the help of this virtual bridge model, an experienced bridge inspection specialist teaches the different deterioration phenomena of concrete bridges to the trainees. The new system was tested, and the inspection results from the case bridge showed that in comparison with the traditional Japanese bridge inspection education system, the new system gives better results. In addition to the improvement of quality of bridge inspections, the new VR/3DCG system-based education brings along some other, more intangible benefits.